Keywords and phrases: rational Bernstein functions, functions approximation, Bézier curves, de Casteljau algorithm.
Received: August 10, 2021; Accepted: December 3, 2021; Published: March 10, 2022
How to cite this article: Jamal Adetola, Koffi Wilfrid Houédanou, Mohamed Allaoui and Aurélien Goudjo, A rational parametrization of Bézier like curves, Far East Journal of Dynamical Systems 34 (2022), 25-64. http://dx.doi.org/10.17654/0972111822003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References;
[1] Carl de Boor, On calculating with B-splines, J. Approx. Theory 6 (1972), 50-62. [2] M. G. Cox, The numerical evaluation of B-spline, J. Inst. Math. Appl. 10 (1972), 134-149. [3] D. F. Rogers, An Introduction to NURBS with Historical Perspective, Ed. Morgan Kaufmann Publishers, 2001. [4] S. Biswas and B. C. Lovell, Bezier and Spline in Image Processing and Machine Vision, Ed. Springer, 2008. [5] A. Chandrasekharan, D. Grobe and R. Drechsler, Design Automation Techniques for Approximation Circuits-verification, Synthesis and Test, Ed. Springer, 2019. [6] P. E. Ceruzzi, A History of Modern Computing, Ed. The MIT Press, 2003. [7] David Solomon, Curves and Surfaces for Computer Graphics, Ed. Springer Sciences + Business Media Inc., 2006. [8] Donald Knuth, The Metafont Book, Ed. Addison-Wesley, 1986. [9] Duncan Marsh, Applied Geometry for Computer Graphics and CAD, Ed. Springer-Verlag, 2005. [10] V. Gupta, T. M. Rassia, P. N. Agrawal and A. M. Acu, Recent Advances in Constructive Approximation Theory, Ed. Springer, 2018. [11] B. Jüttler and R. Piene, Geometric Modeling and Algebraic Geometry, Ed. Springer, 2008. [12] A. Kunoth, T. Lyche, G. Sangalli and S. Serra-Capizzano, Splines and PDEs-From Approximation Theory and Numerical Linear Algebra, Ed. Springer, 2018. [13] E. Lengyel, Mathematics for 3D Game Programming and Computer Graphics, Ed. Charles River Media Inc., 2003. [14] G. E. Randriambelosoa, On a family of rational polynomials for Bezier curves and surfaces, Communication privéeà l’Université d’Antananarivo, Madagascar, 2012. [15] I. J. Schoenberg, Contribution to the Problem of Approximation of Equidistant Data by Analytical Function, I. J. Schoenberg selected papers edited by Carl de Boor Ed. Springer, 1973. [16] K. S. Surana, Numerical Methods and Methods of Approximation in Science and Engineering, Ed. CRC Press, 2018. [17] K. J. Versprille, Computer-aided design applications of the rational B-spline approximation form, Ph.D. Thesis in System and Information Science, Syracuse University, 1975. [18] G. Wahba, Spline Models for Observational Data, Ed. SIAM, 1990. [19] Allaoui Mohamed, Jamal Adetola, Koffi Wilfrid Houédanou and Aurélien Goudjo, A new class of curves of rational B-spline type, Preprint submitted to Mathematical Methods in the Applied Sciences, 2021, 38 pp. https://doi.org/10.22541/au.163253831.19883484/v1.
|