Keywords and phrases: fructose, exercise, triglyceride, women.
Received: November 8, 2021; Accepted: November 17, 2021; Published: November 25, 2021
How to cite this article: Chiharu Iijima, Kaori Kuzawa, Erika Mizutani and Michitaka Naito, Effects of pre- vs. postchallenge aerobic exercise on lipidemia induced by the ingestion of fructose with fat, in healthy young women, International Journal of Nutrition and Dietetics 8 (2022), 1-14. http://dx.doi.org/10.17654/2347527722001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] B. Merino, C. M. Fernández-Díaz, I. Cózar-Castellano and G. Perdom, Intestinal fructose and glucose metabolism in health and disease, Nutrients 12 (2020), 94. [2] M. Grembecka, Natural sweeteners in a human diet, Rocz. Panstw. Zakl. Hig. 66 (2015), 195-202. [3] R. Campbell, N. Tasevska, K. G. Jackson, V. Sagi-Kiss, N. di Paolo, J. S. Mindell, S. J. Lister, K.-T. Khaw and G. G. C. Kuhnle, Association between urinary biomarkers of total sugars intake and measures of obesity in a cross-sectional study, PLOS ONE 12 (2017), e0179508. [4] M. Yamada, K. Murakami, S. Sasaki, Y. Takahashi and H. Okubo, Soft drink intake is associated with diet quality even among young Japanese women with low soft drink intake, J. Am. Diet. Assoc. 108 (2008), 1997-2004. [5] J. Ma, N. M. McKeown, S.-J. Hwang, U. Hoffmann, P. F. Jacques and C. S. Fox, Sugar-sweetened beverage consumption is associated with change of visceral adipose tissue over 6 years of follow-up, Circulation 133 (2016), 370 377. [6] W.-T. Lin, T.-F. Chan, H.-L. Huang, C.-Y. Lee, S. Tsai, P.-W. Wu, Y.-C. Yang, T.-N. Wang and C.-H. Lee, Fructose-rich beverage intake and central adiposity, uric acid, and pediatric insulin resistance, J. Pediatr. 171 (2016), 90-96. [7] J.-M. Schwarz, S. M. Noworolski, A. Erkin-Cakmak, N. J. Korn, M. J. Wen, V. W. Tai, G. M. Jones, S. P. Palii, M. Velasco-Alin, K. Pan, B. W. Patterson, A. Gugliucci, R. H. Lustig and K. Mulligan, Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity, Gastroenterology 153 (2017), 743-752. [8] E. S. Eshak, H. Iso, Y. Kokubo, I. Saito, K. Yamagishi, M. Inoue and S. Tsugane, Soft drink intake in relation to incident ischemic heart disease, stroke, and stroke subtypes in Japanese men and women: The Japan Public Health Centre-based study cohort I, Am. J. Clin. Nutr. 96 (2012), 1390-1397. [9] A. M. Bernstein, L. de Koning, A. J. Flint, K. M. Rexrode and W. C. Willett, Soda consumption and the risk of stroke in men and women, Am. J. Clin. Nutr. 95 (2012), 1190-1199. [10] A. Abdel-Sayed, C. Binnert, K.-A. Lê, M. Bortolotti, P. Schneiter and L. Tappy, A high-fructose diet impairs basal and stress-mediated lipid metabolism in healthy male subjects, Br. J. Nutr. 100 (2008), 393-399. [11] K. L. Stanhope, J. M. Schwarz, N. L. Keim, S. C. Griffen, A. A. Bremer, J. L. Graham, B. Hatcher, C. L. Cox, A. Dyachenko, W. Zhang, J. P. McGahan, A. Seibert, R. M. Krauss, S. Chiu, E. J. Schaefer, M. Ai, S. Otokozawa, K. Nakajima, T. Nakano, C. Beysen, M. K. Hellerstein, L. Berglund and P. J. Havel, Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight /obese humans, J. Clin. Invest. 119 (2009), 1322-1334. [12] A. J. Bidwell, T. J. Fairchild, J. Redmond, L. Wang, S. Keslacy and J. Kanaley, Physical activity offsets the negative effects of a high-fructose diet, Med. Sci. Sports Exerc. 46 (2014), 2091-2098. [13] L. Egli, V. Lecoultre, F. Theytaz, V. Campos, L. Hodson, P. Schneiter, B. Mittendorfer, B. W. Patterson, B. A. Fielding, P. A. Gerber, V. Giusti, K. Berneis and L. Tappy, Exercise prevents fructose-induced hypertriglyceridemia in healthy young subjects, Diabetes 62 (2013), 2259-2265. [14] H. Saito, M. Kagaya, M. Suzuki, A. Yoshida and M. Naito, Simultaneous ingestion of fructose and fat exacerbates postprandial exogenous lipidemia in young healthy Japanese women, J. Atheroscler. Thromb. 20 (2013), 591-600. [15] H. Saito, M. Kato, A. Yoshida and M. Naito, The ingestion of a fructose-containing beverage combined with fat cream exacerbates postprandial lipidemia in young healthy women, J. Atheroscler. Thromb. 22 (2015), 85-94. [16] H. Saito, M. Kato, A. Yoshida and N. Naito, The ingestion of high-fructose syrup-containing cola with a hamburger delays postprandial lipid metabolism in young healthy Japanese women, J. Food Nutr. Sci. 3 (2015), 139-146. [17] M. Kato, A. Yoshida and M. Naito, Fast food ingestion for lunch delays postprandial lipid metabolism in young women, J. Food Nutr. Sci. 5 (2017), 116-121. [18] E. Mizutani, S. Hashimoto, H. Saito, M. Kato, A. Yoshida and M. Naito, Differential effects of sucrose, fructose, and glucose on postprandial carbohydrate and lipid metabolism in young Japanese women, J. Food Nutr. Sci. 6 (2018), 1-11. [19] K. Kuzawa, A. Yoshida, I. Tsukamoto, M. Tokuda and M. Naito, Effect of ingesting resistant maltodextrin on postprandial hyperlipidemia induced by fructose in young women, J. Food Nutr. Sci. 7 (2019), 49-55. [20] Y. Nabeno-Kaeriyama, Y. Fukuchi, S. Hayashi, T. Kimura, A. Tanaka and M. Naito, Delayed postprandial metabolism of triglyceride-rich lipoproteins in obese young men compared to lean young men, Clin. Chim. Acta. 411 (2010), 1694 1699. [21] K. Nakatani, T. Sugimoto, D. Masuda, R. Okano, T. Oya, Y. Monden, T. Yamashita, R. Kawase, H. Nakaoka, M. Inagaki, M. Yuasa-Kawase, K. Tsubakio-Yamamoto, T. Ohama, M. Nishida, M. Ishigami, I. Komuro and S. Yamashita, Serum apolipoprotein B-48 levels are correlated with carotid intima-media thickness in subjects with normal serum triglyceride levels, Atherosclerosis 218 (2011), 226-232. [22] J. Achten, M. C. Venables and A. E. Jeukendrup, Fat oxidation rates are higher during running compared with cycling over a wide range of intensities, Metabolism 52 (2003), 747-752. [23] R. M. Edinburgh, A. Hengist, H. A. Smith, R. L. Travers, F. Koumanov, J. A. Betts, D. Thompson, J.-P. Walhin, G. A. Wallis, D. L. Hamilton, E. J. Stevenson, K. D. Tipton and J. T. Gonzalez, Preexercise breakfast ingestion versus extended overnight fasting increases postprandial glucose flux after exercise in healthy men, Am. J. Physiol. Endocrinol. Metab. 315 (2018), E1062-1074. [24] L. J. van Loon, A. E. Jeukendrup, W. H. Saris and A. J. Wagenmakers, Effect of training status on fuel selection during submaximal exercise with glucose ingestion, J. Appl. Physiol. 87 (1999), 1413-1420. [25] G. Fletcher, F. F. Eves, E. I. Glover, S. L. Robinson, C. A. Vernooij, J. L. Thompson and G. A. Wallis, Dietary intake is independently associated with the maximal capacity for fat oxidation during exercise, Am. J. Clin. Nutr. 105 (2017), 864-872. [26] L. J. van Loon, P. L. Greenhaff, D. Constantin-Teodosiu, W. H. Saris and A. J. Wagenmakers, The effects of increasing exercise intensity on muscle fuel utilisation in humans, J. Physiol. 536 (2001), 295-304. [27] J. A. Romijn, E. F. Coyle, L. S. Sidossis, A. Gastaldelli, J. F. Horowitz, E. Endert and R. R. Wolfe, Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration, Am. J. Physiol. 265 (1993), E380-391. [28] G. Walter, K. Vandenborne, M. Elliott and J. S. Leigh, In vivo ATP synthesis rates in single human muscles during high intensity exercise, J. Physiol. 519 (1999), 901-910. [29] A. E. Jeukendrup and G. A. Wallis, Measurement of substrate oxidation during exercise by means of gas exchange measurements, Int. J. Sports Med. 26 (2005), S28-37. [30] S. Hashimoto, S. Hayashi, A. Yoshida and M. Naito, Acute effects of postprandial aerobic exercise on glucose and lipoprotein metabolism in healthy young women, J. Atheroscler. Thromb. 20 (2013), 204-213. [31] J. Q. Zhang, T. R. Thomas and S. D. Ball, Effect of exercise timing on postprandial lipemia and HDL cholesterol subfractions, J. Appl. Physiol. 85 (1998), 1516-1522. [32] H. R. Aldred, I. C. Perry and A. E. Hardman, The effect of a single bout of brisk walking on postprandial lipemia in normolipidemic young adults, Metabolism 43 (1994), 836-841. [33] J. M. R. Gill, S. L. Herd and A. E. Hardman, Moderate exercise and post-prandial metabolism: Issues of dose-response, J. Sports Sci. 20 (2002), 961-967. [34] P. Poirier, A. Tremblay, C. Catellier, G. Tancrède, C. Garneau and A. Nadeau, Impact of time interval from the last meal on glucose response to exercise in subjects with type 2 diabetes, J. Clin. Endocrinol. Metab. 85 (2000), 2860-2864. [35] J. Haxhi, A. S. di Palumbo and M. Sacchetti, Exercising for metabolic control: is timing important? Ann. Nutr. Metab. 62 (2013), 14-25. [36] L. W. Tobin, B. Kiens and H. Galbo, The effect of exercise on postprandial lipidemia in type 2 diabetic patients, Eur. J. Appl. Physiol. 102 (2008), 361-370. [37] E. Chacko, Exercising tactically for taming postmeal glucose surges, Scientifica (2016), Article ID 4045717. [38] S. Hashimoto, K. Ootani, S. Hayashi and N. Naito, Acute effects of shortly pre- versus postprandial aerobic exercise on postprandial lipoprotein metabolism in healthy but sedentary young women, J. Atheroscler. Thromb. 18 (2011), 891 900. [39] S. L. Herd, B. Kiens, L. H. Boobis and A. E. Hardman, Moderate exercise, postprandial lipemia, and skeletal muscle lipoprotein lipase activity, Metabolism 50 (2001), 756-762. [40] J. M. Gill, M. H. Murphy and A. E. Hardman, Postprandial lipemia: Effects of intermittent versus continuous exercise, Med. Sci. Sports Exerc. 30 (1998), 1515-1520. [41] R. L. Krüger, B. C. Teixeira, J. B. Farinha, R. C. O. Macedo, F. P. Boeno, A. Rech, P. Lopez, R. S. Pinto and A. Reischak-Oliveira, Effect of exercise intensity on postprandial lipemia, markers of oxidative stress, and endothelial function after a high-fat meal, Appl. Physiol. Nutr. Metab. 41 (2016), 1278-1284. [42] J. M. R. Gill, S. L. Herd, V. Vora and A. E. Hardman, Effects of a brisk walk on lipoprotein lipase activity and plasma triglyceride concentrations in the fasted and postprandial states, Eur. J. Appl. Physiol. 89 (2003), 184-190. [43] N. V. Tsetsonis, A. E. Hardman and S. S. Mastana, Acute effects of exercise on postprandial lipemia: A comparative study in trained and untrained middle-aged women, Am. J. Clin. Nutr. 65 (1997), 525-533. [44] J. B. Mitchell, J. R. Rowe, M. Shah, J. J. Barbee, A. M. Watkins, C. Stephens and S. Simmons, Effect of prior exercise on postprandial triglycerides in overweight young women after ingesting a high-carbohydrate meal, Int. J. Sport Nutr. Exerc. Metab. 18 (2008), 49-65. [45] R. C. O. Macedo, F. P. Boeno, J. B. Farinha, T. R. Ramis, J. Rodrigues-Krause, A. F. Vieira, J. Queiroz, C. E. J. Moritz and A. Reischak-Oliveira, Acute and residual effects of aerobic exercise on fructose-induced postprandial lipemia on lean male subjects, Eur. J. Nutr. 58 (2019), 2293-2303. [46] L. Egli, V. Lecoultre, J. Cros, R. Rosset, A.-S. Marques, P. Schneiter, L. Hodson, L. Gabert, M. Laville and L. Tappy, Exercise performed immediately after fructose ingestion enhances fructose oxidation and suppresses fructose storage, Am. J. Clin. Nutr. 103 (2016), 348-355.
|