Keywords and phrases: survey logistic regression, female, genital mutilation determinants.
Received: September 21, 2021; Accepted: October 30, 2021; Published: November 30, 2021
How to cite this article: Ahmed Saied Rahama Abdallah and Mohammed Omar Musa Mohammed, Determinants of female genital mutilation among reproductive women in Sudan: application of survey logistic regression, Advances in Probability, Stochastic Processes and Applied Statistics 1 (2022), 1-12. DOI: 10.17654/PAS2022001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] UNICEF, 2016, https://www.unicef.org/media/files/FGMC_2016_brochure_final_UNICEF_SPREAD.pdf. Retrieved 1 11, 2021. [2] WHO, 2012, https://apps.who.int/iris/bitstream/handle/10665/77428/WHO_RHR_12.41_eng.pdf;jsessionid= D588286CA8877A7D833C0292D1E40ABA?sequence=1. 2012, Retrieved 1 11, 2021. [3] WHO, Female Genital Mutilation, 2017. Retrieved 1 18, 2021, from http://www.who.int/mediacentre/factsheets/fs241/en/. [4] P. R. Bureau, Female Genital Mutilation/Cutting: Data and trends, 2010. Retrieved 1 19, 2021, from http: // www.prb.org/pdf08/fgm-wallchart.pdf. [5] UNDP, Global Consultation on Female Genitalcutting, (2008). Retrieved 1 19, 2021. [6] M. Bassami, T. Pashaei and A. Gharehtapeh, FGM from the viewpoint of jurisprudence, law and medicine, Quarterly Journal of Medical Fighh 2(5) (2010), 171-193. [7] N. M. Nour, Female genital cutting: clinical and cultural guidelines, Obstet. Gynecol. Surv. 59 (2004), 272-279. [8] L. J. Kouba and J. Muasher, Female Circumcision in Africa: An Overview, African Studies 28 (1985), 95-110. Review. https://doi.org/10.2307/524569. [9] UNICEF, Data and Analytics Section-division of Data, Research and Policy, UN Plaza, New York, 2015. [10] H. Elduma, Female genital mutilation in Sudan, Open Access Macedonian Journal of Medical Sciences 6 (2018), 430-434. https://doi.org/10.3889/oamjms.2018.099. [11] B. O. Ahinkorah, Hagan JE Jr Ameyaw, A.-A. Seidu, E. Budu, F. Sambah and T. Schack, Socio-economic and demographic determinants of female genital mutilation in sub-Saharan Africa: analysis of data from demographic and health surveys, Reprod. Health 17 (2020), 162. [12] E. Batyra, E. Coast, B. Wilson and V. Cetorelli, The socioeconomic dynamics of trends in female genital mutilation/cutting across Africa, BMJ Global Health 5 (2020), e003088. [13] B. Karmake, N.-B. Kandala, D. Chung and A. Clarke, Factors associated with female genital mutilation in Burkina Faso and its policy implications, International Journal for Equity in Health (2011), 10-20. [14] G. A. Azez, A. Williams, H. Tweya, M. S. Obsa, T. M. Mokonnon, Z. Z. Kanche, R. O. Fite and A. D. Harries, Changing prevalence and factors associated with female genital mutilation in Ethiopia: Data from the 2000, 2005 and 2016 national demographic health surveys, PLoS ONE 15(9) (2020), e0238495. doi:10.1371/journal.pone.0238495. PMID: 32881931; PMCID: PMC7470370. [15] S. Yaya and B. Ghose, Female genital mutilation in Nigeria: a persisting challenge for women’s rights, Social Sciences 7 (2018), 244. [16] A. N. Alosaimi, B. Essén, L. Riitta, B. I. Nwaru and H. Mouniri, Factors associated with female genital cutting in Yemen and its policy implication, Midwifery 74 (2019), 99-106. [17] R. O. Fite, L. K. Hanfore, E. A. Lake and M. S. Obsa, Prevalence of female genital mutilation among women in Ethiopia: a systematic review and meta-analysis, Heliyon 6 (2020), e04403. [18] M. A. Asemahagn, Determinants of female genital mutilation practices in East Gojjam Zone, Western Amhara, Ethiopia, Ethiop. Med. J. 54(3) (2016), 109-116. [19] Z. Chen and H. Mantel, Analysis of Binary data from a complex survey with misclassification in an ordinal covariate, SSC Annual Meeting, Proceedings of the Survey Methods Section, 2009. [20] K. Archer and S. Lemeshow, Goodness-of-fit test for logistic regression model fitted using survey data, Stat. Journal 6(1) (2006), 97-105. [21] E. S. Lee and R. N. Forthofer, Analyzing Complex Survey Data, Vol. 71, Sage, USA, 2006. [22] D. G. Ayele, T. T. Zewotir and H. G. Mwambi, Prevalence and risk factors of malaria in Ethiopia, Malaria Journal (2012), doi:10.1186/1475-2875-11-195. [23] J. Rao and A. Scott, On chi-squared tests for multiway contingency tables with cell proportions estimated from survey data, Ann. Statist. 12(1) (1984), 46-60.
|