Keywords and phrases: bullet-proof, penetration depth, timber, unclassified buildings.
Received: May 9, 2022; Accepted: June 17, 2022; Published: July 8, 2022
How to cite this article: Elina Barone, Baiba Gaujena and Janis Videmanis, Projectile penetration depth into wood-based frames of unclassified buildings, Far East Journal of Mechanical Engineering and Physics 3 (2022), 11-20. http://dx.doi.org/10.17654/2229451122002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. Borodinecs, A. Geikins and A. Prozuments, Energy consumption and retrofitting potential of Latvian unclassified buildings, Vol. 163, 2020. doi: 10.1007/978-981-32-9868-2_27. [2] A. Borodinecs, A. Geikins, E. Barone, V. Jacnevs and A. Prozuments, Solution of Bullet proof wooden frame construction panel with a built-in air duct, Buildings 12(1) (2022), 30. doi: 10.3390/buildings12010030. [3] A. Geikins, A. Borodinecs, G. Daksa, R. Bogdanovics and D. Zajecs, Typology of unclassified buildings and specifics of input parameters for energy audits in Latvia, IOP Conference Series: Earth and Environmental Science, Vol. 290, 2019. doi: 10.1088/1755-1315/290/1/012131. [4] Regulations of the Cabinet of Ministers of Latvia No. 326, Building classification regulations, Latvia, 2018. Accessed: Sep. 04, 2021. [Online]. Available: https://likumi.lv/ta/id/299645-buvju-klasifikacijas-noteikumi. [5] S. Boatright and G. Garrett, The effect of knots on the fracture strength of wood - I. A review of methods of assessment, 1979. [6] L. Koene and F. R. Broekhuis, Bullet penetration into wooden targets, Long Beach, CA, 2017, Accessed: Feb. 22, 2021. [Online]. Available: https://rb.gy/axxqty. [7] L. Koene, R. Hermsen and S. D. Brouwer, Projectile ricochet from wooden targets, Proceedings in 27th International Symposium on Ballistics Freiburg, Germany, Vol. 2, 2013. [8] A. Nardin, L. Boström and F. Zaupa, The effect of knots on the fracture of wood, Conference paper in World Conference on Timber Engineering, Canada, August, 2000. [9] L. Koene and F. R. Broekhuis, Bullet penetration into medium density fibreboard targets, 2019. [10] J. G. Carrillo, R. A. Gamboa and P. I. González-Chi, Performance improvement on aramid/polypropylene composite for high velocity impacts, Conference paper ANTEC 2011, May 2011. pp. 695-699. [11] K. Sanborn, Exploring cross-laminated timber use for temporary military structures: ballistic considerations, 2018. Accessed: Feb. 22, 2021. [Online]. Available: https://smartech.gatech.edu/handle/1853/59910. [12] K. Sanborn, T. R. Gentry, Z. Koch, A. Valkenburg, C. Conley and L. K. Stewart, Ballistic performance of cross-laminated timber (CLT), International Journal of Impact Engineering 128 (2019), 11-23. doi: https://doi.org/10.1016/j.ijimpeng.2018.11.007. [13] C. Pirvu, Ballistic Testing of Armor Panels Based on Aramid, in Ballistics, L. D. E.-C. Osheku, Ed. Rijeka: IntechOpen, 2019, p. 5. doi: 10.5772/intechopen.78315. [14] V. Anand, A. Edwin, D. Justus, K. Prasanna, S. Ramesh and S. Arun, Energy absorption and ballistic impact behavior of Kevlar woven fabrics, 2018. [Online]. Available: www.tjprc.org. [15] A. Majumdar, B. S. Butola and A. Srivastava, An analysis of deformation and energy absorption modes of shear thickening fluid treated Kevlar fabrics as soft body armour materials, Materials and Design 51 (2013), 148-153. doi: 10.1016/j.matdes.2013.04.016. [16] E. Randjbaran et al., The effects of stacking sequence layers of six layers composite materials in ballistic energy absorption, Article in International Journal of Material Science Innovations 1(6) (2013), 293-305. [Online]. Available: https://www.researchgate.net/publication/261713262. [17] M. Barcikowski, Glass fibre polyester composites under ballistic impact, Kompozyty/Composites 8 (2008), 70-76. [18] C. Ulven, U. K. Vaidya and M. V. Hosur, Effect of projectile shape during ballistic perforation of VARTM carbon/epoxy composite panels, Composite Structures 61(1-2) (2003), 143-150. doi: 10.1016/S0263-8223(03)00037-0. [19] K. Karthikeyan, B. P. Russell, N. A. Fleck, H. N. G. Wadley and V. S. Deshpande, The effect of shear strength on the ballistic response of laminated composite plates, European Journal of Mechanics, A/Solids 42 (2013), 35-53. doi: 10.1016/j.euromechsol.2013.04.002. [20] H. M. Cho, S. Wi, S. J. Chang and S. Kim, Hygrothermal properties analysis of cross-laminated timber wall with internal and external insulation systems, Journal of Cleaner Production 231 (2019), 1353-1363. doi: 10.1016/j.jclepro.2019.05.197. [21] R. Brandner, G. Flatscher, A. Ringhofer, G. Schickhofer and A. Thiel, Cross laminated timber (CLT): overview and development, European Journal of Wood and Wood Products 74(3) (2016), 331-351. doi: 10.1007/s00107-015-0999-5. [22] J. Melderis, Principles of construction and operation of weapons and ammunition (Latvian), Riga, 2008. Accessed: Oct. 15, 2021. [Online]. Available: http://virsnieki.lv/wp/wp-content/uploads/2016/03/Iero%C4%8Du-un-mun%C4% ABcijas-uzb%C5%ABve-un-darb%C4%ABbas-principi.pdf. [23] A. Jabbar, M. Hasan Malik, T. Hussain, A. Zulifqar and M. Tausif, Comparison of mechanical and ballistic response of single layer and double layer interlock woven fabrics, Polymer Composites 35(8) (2014), 1583-1591. doi: 10.1002/PC.22811. [24] Z. Rosenberg and E. Dekel, Terminal Ballistics, 2nd ed., Vol. XIV, Springer-Verlag Berlin Heidelberg, 2012. [25] L. Koene and F. R. Broekhuis, Bullet Penetration into Wooden Targets, 2017. doi: 10.12783/ballistics2017/16976. [26] ASTM D905-08, Standard test method for strength properties of adhesive bonds in shear by compression loading, American Society of Testing and Materials, 2013. [27] BS EN 1063:2000, Glass in building, Security glazing, Testing and classification of resistance against bullet attack, Great Britain, 2000. [28] DIN EN 1522 standards, Windows, Doors, Shutters and Blinds - Bullet Resistance, Germany, 1999, pp. 1-9.
|