Keywords and phrases: polygon space, bond angle, topological type.
Received: August 6, 2021; Accepted: September 8, 2021; Published: September 10, 2021
How to cite this article: Yasuhiko Kamiyama, The configuration space of equilateral and equiangular octagons, JP Journal of Geometry and Topology 26(2) (2021), 117-129. DOI: 10.17654/GT026020117
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] G. M. Crippen, Exploring the conformation space of cycloalkanes by linearized embedding, J. Comput. Chem. 13 (1992), 351-361. [2] M. Farber, Invitation to topological robotics, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), 2008. [3] Y. Kamiyama, A filtration of the configuration space of spatial polygons, Adv. Appl. Discrete Math. 22(1) (2019), 67-74. [4] Y. Kamiyama, The configuration space of equilateral and equiangular heptagons, JP J. Geom. Topol. 25(1-2) (2020), 25-33. [5] Y. Kamiyama, On the singularity of the configuration space of equilateral and equiangular polygons, Advances and Applications in Discrete Mathematics (submitted). [6] M. Kapovich and J. Millson, The symplectic geometry of polygons in the Euclidean space, J. Differential Geom. 44 (1996), 479-513. [7] J. O’Hara, The configuration space of equilateral and equiangular hexagons, Osaka J. Math. 50 (2013), 477-489.
|