Keywords and phrases: WENO, critical points, smoothness indicator, CPU time, convergence.
Received: May 2, 2021; Revised: May 28, 2021; Accepted: June 30, 2021; Published: July 31, 2021
How to cite this article: Anurag Kumar and Bhavneet Kaur, A third order Weno scheme with a simple global smoothness indicator to improve convergence rate at critical points, JP Journal of Heat and Mass Transfer 23(2) (2021), 359-388. DOI: 10.17654/HM023020359
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] B. Kubrak, H. Herlina, F. Greve and J. G. Wissink, Low-diffusivity scalar transport using a WENO scheme and dual meshing, J. Comput. Phys. 240 (2013), 158-173. [2] X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115(1) (1994), 200-212. [3] A. Harten, S. Osher, B. Engquist and S. R. Chakravarthy, Some results on uniformly high-order accurate essentially nonoscillatory schemes, Appl. Numer. Math. 2(3-5) (1986), 347-377. [4] A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes. I, SIAM J. Numer. Anal. 24(2) (1987), 279-309. [5] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126(1) (1996), 202-228. [6] C.-W. Shu, High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev. 51(1) (2009), 82-126. [7] D. S. Balsara and C.-W. Shu, Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys. 160(2) (2000), 405-452. [8] A. K. Henrick, T. D. Aslam and J. M. Powers, Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys. 207(2) (2005), 542-567. [9] R. Borges, M. Carmona, B. Costa and W. S. Don, An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys. 227(6) (2008), 3191-3211. [10] N. K. Yamaleev and M. H. Carpenter, Third-order energy stable WENO scheme, J. Comput. Phys. 228(8) (2009), 3025-3047. [11] M. Castro, B. Costa and W. S. Don, High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws, J. Comput. Phys. 230(5) (2011), 1766-1792. [12] W.-S. Don and R. Borges, Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes, J. Comput. Phys. 250 (2013), 347-372. [13] W. Xiaoshuai and Z. Yuxin, A high-resolution hybrid scheme for hyperbolic conservation laws, Internat. J. Numer. Methods Fluids 78(3) (2015), 162-187. [14] X. Wu, J. Liang and Y. Zhao, A new smoothness indicator for third-order WENO scheme, Internat. J. Numer. Methods Fluids 81(7) (2016), 451-459. [15] Y. Ha, C. H. Kim, Y. J. Lee and J. Yoon, An improved weighted essentially non-oscillatory scheme with a new smoothness indicator, J. Comput. Phys. 232(1) (2013), 68-86. [16] P. Fan, Y. Shen, B. Tian and C. Yang, A new smoothness indicator for improving the weighted essentially non-oscillatory scheme, J. Comput. Phys. 269 (2014), 329-354. [17] F. Acker, R. D. R. Borges and B. Costa, An improved WENO-Z scheme, J. Comput. Phys. 313 (2016), 726-753. [18] W. Xu and W. Wu, Improvement of third-order WENO-Z scheme at critical points, Comput. Math. Appl. 75(9) (2018), 3431-3452. [19] W. Xu and W. Wu, An improved third-order weighted essentially non-oscillatory scheme achieving optimal order near critical points, Computers and Fluids 162 (2018), 113-125. [20] A. Kumar and B. Kaur, An improvement of third order WENO scheme for convergence rate at critical points with new non-linear weights, Diff. Equ. Dyn. Syst. 28(3) (2020), 539-557. [21] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii, Upwind and High-resolution Schemes, Springer, 1989, pp. 328-374. [22] S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys. 31(3) (1979), 335-362. [23] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on Pure and Applied Mathematics 7(1) (1954), 159-193. [24] P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54(1) (1984), 115-173. [25] P. D. Lax and X.-D. Liu, Solution of two-dimensional Riemann problems of gas dynamics by positive schemes, SIAM J. Sci. Comput. 19(2) (1998), 319-340.
|