Reviewers
|
Book & Monographs
|
Conference
|
Contact Us
SEARCH
|
My Profile
|
My Shopping Cart
|
Logout
Home
Publication Ethics
Open Access Policy
Guidelines
Journals
▼pphmjopenaccess.com▼
Engineering
Mathematics
Statistics
All Journals
Submit a Manuscript
Author Login
Author Registration
Forget Password
Journal Menu
Journal Home
Editorial Board
Guidelines for Authors
Indexing
Contents
Contents
Subscribe
Publication Ethics and Publication Malpractice Statement
Content
Volume 25 (2025)
Volume 25, Issue 1 (In Progress)
Pg 1 - 15 (March 2025)
Volume 24 (2024)
Volume 24, Issue 3
Pg 399 - 572 (November 2024)
Volume 24, Issue 2
Pg 197 - 397 (July 2024)
Volume 24, Issue 1
Pg 1 - 196 (March 2024)
Volume 23 (2023)
Volume 23, Issue 3
Pg 227 - 327 (November 2023)
Volume 23, Issue 2
Pg 95 - 225 (July 2023)
Volume 23, Issue 1
Pg 1 - 94 (March 2023)
Volume 22 (2022)
Volume 22,
Pg 1 - 84 (December 2022)
Volume 21 (2022)
Volume 21,
Pg 1 - 154 (September 2022)
Volume 20 (2022)
Volume 20,
Pg 1 - 123 (June 2022)
Volume 19 (2022)
Volume 19,
Pg 1 - 144 (March 2022)
Volume 18 (2021)
Volume 18, Issue 3
Pg 305 - 504 (December 2021)
Volume 18, Issue 2
Pg 149 - 303 (August 2021)
Volume 18, Issue 1
Pg 1 - 147 (April 2021)
Volume 17 (2020)
Volume 17, Issue 2
Pg 307 - 602 (December 2020)
Volume 17, Issue 1
Pg 1 - 305 (June 2020)
Volume 16 (2019)
Volume 16, Issue 2
Pg 1 - 158 (December 2019)
Volume 16, Issue 1
Pg 1 - 111 (June 2019)
Volume 15 (2018)
Volume 15, Issue 2
Pg 83 - 173 (December 2018)
Volume 15, Issue 1
Pg 1 - 82 (June 2018)
Volume 14 (2017)
Volume 14, Issue 2
Pg 85 - 120 (December 2017)
Volume 14, Issue 1
Pg 1 - 84 (June 2017)
Volume 13 (2016)
Volume 13, Issue 2
Pg 103 - 238 (December 2016)
Volume 13, Issue 1
Pg 1 - 101 (June 2016)
Volume 12 (2015)
Volume 12, Issue 2
Pg 81 - 178 (December 2015)
Volume 12, Issue 1
Pg 1 - 80 (June 2015)
Volume 11 (2014)
Volume 11, Issue 2
Pg 89 - 168 (November 2014)
Volume 11, Issue 1
Pg 1 - 88 (June 2014)
Volume 10 (2013)
Volume 10, Issue 2
Pg 49 - 92 (November 2013)
Volume 10, Issue 1
Pg 1 - 48 (August 2013)
Volume 9 (2013)
Volume 9, Issue 2
Pg 67 - 118 (May 2013)
Volume 9, Issue 1
Pg 1 - 66 (February 2013)
Volume 8 (2012)
Volume 8, Issue 1-2 (Aug-Nov)
Pg 1 - 77 (November 2012)
Volume 7 (2012)
Volume 7, Issue 2
Pg 61 - 119 (May 2012)
Volume 7, Issue 1
Pg 1 - 59 (February 2012)
Volume 6 (2011)
Volume 6, Issue 2
Pg 77 - 120 (November 2011)
Volume 6, Issue 1
Pg 1 - 75 (August 2011)
Volume 5 (2011)
Volume 5, Issue 2
Pg 73 - 137 (May 2011)
Volume 5, Issue 1
Pg 1 - 71 (February 2011)
Volume 4 (2010)
Volume 4, Issue 3
Pg 213 - 311 (October 2010)
Volume 4, Issue 2
Pg 107 - 212 (June 2010)
Volume 4, Issue 1
Pg 1 - 105 (February 2010)
Volume 3 (2009)
Volume 3, Issue 3
Pg 171 - 256 (October 2009)
Volume 3, Issue 2
Pg 77 - 169 (June 2009)
Volume 3, Issue 1
Pg 1 - 75 (February 2009)
Volume 2 (2008)
Volume 2, Issue 3
Pg 169 - 261 (October 2008)
Volume 2, Issue 2
Pg 81 - 168 (June 2008)
Volume 2, Issue 1
Pg 1 - 80 (February 2008)
Volume 1 (2007)
Volume 1, Issue 3
Pg 217 - 306 (October 2007)
Volume 1, Issue 2
Pg 109 - 215 (June 2007)
Volume 1, Issue 1
Pg 1 - 108 (February 2007)
Categories
▼pphmjopenaccess.com▼
Engineering
Mathematics
Statistics
All Journals
JP Journal of Biostatistics
JP Journal of Biostatistics
Volume 3, Issue 2, Pages 109 - 144 (June 2009)
MARTINGALE INFERENCE OF MULTI-STATE MARKOV PROCESSES FOR APPLICATIONS IN SURVIVAL ANALYSIS AND EPIDEMIOLOGY
John J. Hsieh (U.S.A.)
Abstract:
This article develops martingale methods of estimation and hypothesis testing for multi-state Markov processes and applies them to make inference of multi-state survival and epidemiologic models. The approach is a generalization of the hazards processes techniques described in Hsieh [10] and Andersen et al. [1] for competing risks models to deal with intensity processes in multi-state models. The intensity processes arising from the point processes, marked processes and marked processes with covariate paths, respectively, are derived as compensators of appropriate submartingales from the corresponding deterministic intensity functions. The derived intensity processes and associated martingales are employed to obtain nonparametric estimates of various deterministic intensity, cumulative intensity and ratios thereof, as well as the survival function and its functionals. Asymptotic distributions of the estimators and test statistics are obtained, using martingale transform theorem and martingale central limit theorem. These results are illustrated with numerical examples.
Keywords and phrases:
counting process, predictable process, transition rate, survival function, intensity process, covariate, censoring, competing risks, epidemic model.
Number of Downloads:
280 |
Number of Views:
775
Previous
Next
P-ISSN: 0973-5143
Journal Stats
Publication count:
324
Citation count (Google Scholar):
424
h10-index (Google Scholar):
11
h-index (Google Scholar):
10
Downloads :
84042
Views:
260605
Downloads/publish articles:
259.39
Citations (Google Scholar)/publish articles:
1.31
This website is best viewed at 1024x768 or higher resolution with Microsoft Internet Explorer 6 or newer.