Content
Volume 92 (2025)
Volume 91 (2024)
Volume 91, Issue 12
Pg 1485 - 1625 (December 2024)
Volume 91, Issue 11
Pg 1355 - 1483 (November 2024)
Volume 91, Issue 10
Pg 1217 - 1353 (October 2024)
Volume 91, Issue 9
Pg 1095 - 1215 (September 2024)
Volume 91, Issue 8
Pg 943 - 1094 (August 2024)
Volume 91, Issue 7
Pg 813 - 942 (July 2024)
Volume 91, Issue 6
Pg 673 - 811 (June 2024)
Volume 91, Issue 5
Pg 539 - 671 (May 2024)
Volume 91, Issue 4
Pg 393 - 537 (April 2024)
Volume 91, Issue 3
Pg 257 - 392 (March 2024)
Volume 91, Issue 2
Pg 125 - 255 (February 2024)
Volume 91, Issue 1
Pg 1 - 123 (January 2024)
Volume 90 (2023)
Volume 89 (2023)
Volume 88 (2023)
Volume 87 (2023)
Volume 86 (2023)
Volume 85 (2023)
Volume 84 (2023)
Volume 83 (2022)
Volume 82 (2022)
Volume 81 (2022)
Volume 80 (2022)
Volume 79 (2022)
Volume 78 (2022)
Volume 77 (2022)
Volume 76 (2022)
Volume 75 (2022)
Volume 74 (2022)
Volume 73 (2022)
Volume 72 (2022)
Volume 71 (2021)
Volume 70 (2021)
Volume 69 (2021)
Volume 68 (2021)
Volume 67 (2021)
Volume 66 (2021)
Volume 65 (2020)
Volume 64 (2020)
Volume 63 (2020)
Volume 62 (2020)
Volume 61 (2020)
Volume 60 (2020)
Volume 59 (2019)
Volume 58 (2019)
Volume 57 (2019)
Volume 56 (2019)
Volume 55 (2019)
Volume 54 (2019)
Volume 53 (2018)
Volume 52 (2018)
Volume 51 (2017)
Volume 50 (2017)
Volume 49 (2016)
Volume 48 (2016)
Volume 47 (2015)
Volume 46 (2015)
Volume 45 (2015)
Volume 44 (2015)
Volume 43 (2014)
Volume 42 (2014)
Volume 41 (2014)
Volume 40 (2014)
Volume 39 (2014)
Volume 38 (2014)
Volume 37 (2013)
Volume 36 (2013)
Volume 35 (2013)
Volume 34 (2013)
Volume 33 (2013)
Volume 32 (2013)
Volume 31 (2012)
Volume 30 (2012)
Volume 29 (2012)
Volume 28 (2012)
Volume 27 (2012)
Volume 26 (2012)
Volume 25 (2011)
Volume 24 (2011)
Volume 23 (2011)
Volume 22 (2011)
Volume 21 (2011)
Volume 20 (2011)
Volume 19 (2010)
Volume 18 (2010)
Volume 17 (2010)
Volume 16 (2010)
Volume 15 (2010)
Volume 14 (2010)
Volume 13 (2009)
Volume 12 (2009)
Volume 11 (2009)
Volume 10 (2008)
Volume 9 (2008)
Volume 8 (2008)
Volume 7 (2007)
Volume 6 (2006)
Volume 5 (2005)
Volume 4 (2004)
Volume 3 (2003)
Volume 2 (2002)
Volume 1 (2001)
Advances and Applications in Statistics
-->
Abstract: It
is known that every distribution on
R +
is
the weak limit of a sequence of distributions
with rational Laplace-Stieltjes transform (of
mixtures with positive weights of gamma
distribution). Steutel and van Eenige [
looked at the discrete analogue of this
result. Here we look into the role of the
discrete Mittag-Leffler distributions in the
study of approximation of distributions on
Z + .
The
concept of Poisson mixtures is generalized to
discrete stable mixtures. It is shown that
distributions on
Z +
that
can be approximated by mixtures of generalized
discrete Linnik distributions are discrete
stable mixtures. Discrete semi-stable
autoregressive process is introduced. As a
special case, we study discrete stable
autoregressive process .
Keywords and phrases: autoregressive models, discrete Mittag-Leffler laws, discrete semi- stable laws, discrete stable laws, positive Linnik distribution, Mittag-Leffler distribution, Poisson mixtures.
Number of Downloads: 463 | Number of Views: 1478
P-ISSN: 0972-3617
Journal Stats
Publication count: 1269
Citation count (Google Scholar): 2560
h10-index (Google Scholar): 57
h-index (Google Scholar): 20
Downloads : 416931
Views: 1624396
Downloads/publish articles: 328.55
Citations (Google Scholar)/publish articles: 2.02