Keywords and phrases: equivariant cohomology, syzygies, compact Lie groups, semidirect product
Received: April 21, 2024; Revised: May 23, 2024; Accepted: June 10, 2024; Published: December 24, 2024
How to cite this article: Sergio Chaves, Equivariant cohomology for semidirect product actions, JP Journal of Geometry and Topology 30(2) (2024), 83-104. https://doi.org/10.17654/0972415X24006
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] A. Adem and R. J. Milgram, Cohomology of finite groups, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 2nd ed., Springer-Verlag, Berlin, Vol. 309, 2004. https://doi.org/10.1007/978-3-662-06280-7. [2] C. Allday and V. Puppe, Cohomological methods in transformation groups, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, Vol. 32, 1993. https://doi.org/10.1017/CBO9780511526275. [3] C. Allday, M. Franz and V. Puppe, Equivariant cohomology, syzygies and orbit structure, Trans. Amer. Math. Soc. 366(12) (2014), 6567-6589. https://doi.org/10.1090/S0002-9947-2014-06165-5. [4] C. Allday, M. Franz and V. Puppe, Syzygies in equivariant cohomology in positive characteristic, Forum Math. 33(2) (2021), 547-567. https://doi.org/10.1515/forum-2020-0188. [5] M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14(1) (1982), 1-15. https://doi.org/10.1112/blms/14.1.1. [6] T. J. Baird and N. Heydari, Cohomology of quotients in real symplectic geometry, Algebr. Geom. Topol. 22(7) (2022), 3249-3276. https://doi.org/10.2140/agt.2022.22.3249. [7] P. F. Baum, On the cohomology of homogeneous spaces, Topology 7 (1968), 15 38. https://doi.org/10.1016/0040-9383(86)90012-1. [8] D. Biss, V. W. Guillemin and T. S. Holm, The mod 2 cohomology of fixed point sets of anti-symplectic involutions, Adv. Math. 185(2) (2004), 370-399. https://doi.org/10.1016/j.aim.2003.07.007. [9] E. H. Brown Jr., The cohomology of and with integer coefficients, Proc. Amer. Math. Soc. 85(2) (1982), 283-288. https://doi.org/10.2307/2044298. [10] V. M. Buchstaber and T. E. Panov, Torus actions and their applications in topology and combinatorics, University Lecture Series, Vol. 24, American Mathematical Society, Providence, RI, 2002. https://doi.org/10.1090/ulect/024. [11] S. Chaves, The quotient criterion for syzygies in equivariant cohomology for elementary abelian 2-group actions, La Matematica 3 (2024), 1016-1031. https://doi.org/10.1007/s44007-024-00112-2. [12] M. W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(2) (1991), 417-451. https://doi.org/10.1215/S0012-7094-91-06217-4. [13] J. J. Duistermaat, Convexity and tightness for restrictions of Hamiltonian functions to fixed point sets of an antisymplectic involution, Trans. Amer. Math. Soc. 275(1) (1983), 417-429. https://doi.org/10.2307/1999030. [14] T. Frankel, Fixed points and torsion on Kähler manifolds, Ann. of Math. 70(2) (1959), 1-8. https://doi.org/10.2307/1969889. [15] M. Franz, Syzygies in equivariant cohomology for non-abelian Lie groups, Configuration Spaces, Springer INdAM Ser., Springer, [Cham], Vol. 14, 2016, pp. 325-360. [16] A. Hattori and M. Masuda, Theory of multi-fans, Osaka J. Math. 40(1) (2003), 1 68. [17] J. C. Hausmann, T. Holm and V. Puppe, Conjugation spaces, Algebr. Geom. Topol. 5 (2005), 923-964. https://doi.org/10.2140/agt.2005.5.923. [18] J. Leray, Sur l’homologie des groupes de Lie, des espaces homogènes et des espaces fibrés principaux, Colloque de topologie (espaces fibrés), Bruxelles, 1950, pp. 101-115. [19] J. P. May, The cohomology of principal bundles, homogeneous spaces, and two-stage Postnikov systems, Bull. Amer. Math. Soc. 74 (1968), 334-339. https://doi.org/10.1090/S0002-9904-1968-11947-0. [20] M. Mimura and H. Toda, Topology of Lie groups, I, II, Translations of Mathematical Monographs, Vol. 91, Japanese edition, American Mathematical Society, Providence, RI, 1991. https://doi.org/10.1090/mmono/091.
|