Keywords and phrases: multimodal biometric, score-level fusion, TriBlendNN model, template matching, enrolment and authentication system, neural network, face recognition
Received: August 22, 2024; Revised: October 18, 2024; Accepted: October 23, 2024; Published: November 30, 2024
How to cite this article: Abdulgader Zaid Almaymuni, Ahmad Raza Khan, Azan Hamad Alkhorem and Mohammed A. Saleh, Multimodal biometric enrolment and authentication system (MBEAS) with modified score-level fusion and TriBlendNN-based template matching, Advances and Applications in Discrete Mathematics 42(2) (2025), 113-149. https://doi.org/10.17654/0974165825009
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] R. Ryu, S. Yeom, S. H. Kim and D. Herbert, Continuous multimodal biometric authentication schemes: a systematic review, IEEE Access 9 (2021), 34541-34557. [2] A. Al Abdulwahid, N. Clarke, I. Stengel, S. Furnell and C. Reich, Continuous and transparent multimodal authentication: reviewing the state of the art, Cluster Computing 19 (2016), 455-474. [3] M. Singh, R. Singh and A. Ross, A comprehensive overview of biometric fusion, Information Fusion 52 (2019), 187-205. [4] S. Aleem, P. Yang, S. Masood, P. Li and B. Sheng, An accurate multi-modal biometric identification system for person identification via fusion of face and finger print, World Wide Web 23 (2020), 1299-1317. [5] V. Talreja, M. C. Valenti and N. M. Nasrabadi, Deep hashing for secure multimodal biometrics, IEEE Transactions on Information Forensics and Security 16 (2020), 1306-1321. [6] P. Szczuko, A. Czyżewski, P. Hoffmann, P. Bratoszewski and M. Lech, Validating data acquired with experimental multimodal biometric system installed in bank branches, Journal of Intelligent Information Systems 52 (2019), 1-31. [7] I. A. Ogbodo, Exploring access to EHR by emergency patients using multimodal biometrics, Int. J. Latest Technol. Eng. Manag. Appl. Sci. 9 (2020), 44-50. [8] M. Rukhiran, Wong-In S, Netinant P. IoT-based biometric recognition systems in education for identity verification services: Quality assessment approach, IEEE Access. 2023 Mar 6; 11:22767-87. [9] R. Brown, G. Bendiab, S. Shiaeles and B. Ghita, A novel multimodal biometric authentication system using machine learning and blockchain, Selected Papers from the 12th International Networking Conference: INC 2020, Springer, Vol. 12, 2021, pp. 31-46. [10] T. Vijayakumar, Synthesis of palm print in feature fusion techniques for multimodal biometric recognition system online signature, Journal of Innovative Image Processing (JIIP) 3(2) (2021), 131-143. [11] M. Labayen, R. Vea, J. Flórez, N. Aginako and B. Sierra, Online student authentication and proctoring system based on multimodal biometrics technology, IEEE Access 9 (2021), 72398-72411. [12] M. Sabri, M. S. Moin and F. Razzazi, A new framework for match-on-card and match-on-host quality-based multimodal biometric authentication, Journal of Signal Processing Systems 91 (2019), 163-177. [13] R. Das, E. Piciucco, E. Maiorana and P. Campisi, Convolutional neural network for finger-vein-based biometric identification, IEEE Transactions on Information Forensics and Security 14(2) (2018), 360-373. [14] S. S. Ali, I. I. Ganapathi, S. Prakash, P. Consul and S. Mahyo, Securing biometric user template using modified minutiae attributes, Pattern Recognition Letters 129 (2020), 263-270. [15] C. Kant and S. Chaudhary, A watermarking-based approach for the protection of templates in a multimodal biometric system, Procedia Computer Science 167 (2020), 932-941. [16] O. Najah Kadhim, M. Hasan Abdulameer and Y. Mahdi Hadi Al-Mayali, A Multimodal Biometric System for Iris and Face Traits Based on Hybrid Approaches and Score Level Fusion, In BIO Web of Conferences, Vol. 97, EDP Sciences, 2024, p. 00016. [17] H. Purohit and P. K. Ajmera, Optimal feature level fusion for secured human authentication in multimodal biometric system, Machine Vision and Applications 32(1) (2021), 24. [18] T. S. Rao and E. S. Reddy, Multimodal optimal score level fusion method in multimodal biometric system, Webology 19(2) (2022), 8565-8586. [19] C. Medjahed, A. Rahmoun, C. Charrier and F. Mezzoudj, A deep learning-based multimodal biometric system using score fusion, IAES Int. J. Artif. Intell. 11(1) (2022), 65. [20] A. J. Prakash, K. K. Patro, S. Samantray, P. Pławiak and M. Hammad, A deep learning technique for biometric authentication using ECG beat template matching, Information 14(2) (2023), 65. [21] F. Ahamed, F. Farid, B. Suleiman, Z. Jan, L. A. Wahsheh and S. Shahrestani, An intelligent multimodal biometric authentication model for personalised healthcare services, Future Internet 14(8) (2022), 222. [22] S. P. Singh and S. Tiwari, A dual multimodal biometric authentication system based on woa-ann and ssa-dbn techniques, Sci. 5(1) (2023), 10. [23] F. Cherifi, K. Amroun and M. Omar, Robust multimodal biometric authentication on IoT device through ear shape and arm gesture, Multimedia Tools and Applications 80(10) (2021), 14807-14827. [24] H. Byeon, V. Raina, M. Sandhu, M. Shabaz, I. Keshta, M. Soni and T. V. Lakshmi, Artificial intelligence-enabled deep learning model for multimodal biometric fusion, Multimedia Tools and Applications (2024), 1-24. [25] S. Tharewal, T. Malche, P. K. Tiwari, M. Y. Jabarulla, A. A. Alnuaim, A. M. Mostafa and M. A. Ullah, Score‐level fusion of 3D face and 3D ear for multimodal biometric human recognition, Computational Intelligence and Neuroscience 2022(1) (2022), 3019194. [26] N. Alay and H. H. Al-Baity, Deep learning approach for multimodal biometric recognition system based on fusion of iris, face, and finger vein traits, Sensors 20(19) (2020), 5523. [27] S. Daas, A. Yahi, T. Bakir, M. Sedhane, M. Boughazi and E. B. Bourennane, Multimodal biometric recognition systems using deep learning based on the finger vein and finger knuckle print fusion, IET Image Processing 14(15) (2020), 3859-3868. [28] B. Pathak and D. Barooah, Texture analysis based on the gray-level co-occurrence matrix considering possible orientations, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 2(9) (2013), 4206-4212. [29] Y. Tang, F. Gao, J. Feng and Y. Liu, FingerNet: an unified deep network for fingerprint minutiae extraction, 2017 IEEE International Joint Conference on Biometrics (IJCB), IEEE, 2017, pp. 108-116. [30] L. Muda, M. Begam and I. Elamvazuthi, Voice recognition algorithms using Mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques, 2010. arXiv preprint arXiv:1003.4083. [31] A. Siguenza, J. Garrido-Salas, E. Anguiano, G. Gonzalez-de-Rivera, R. Ribalda, M. Faundez-Zanuy, J. A. Ortega and V. Cardenoso-Payo, BiosecurID: a multimodal biometric database, Pattern Anal. Appl. 13(2) (2010), 235-246. https://doi.org/10.1007/s10044-009-0151-4. [32] A. K. Yadav, Deep learning approach for multimodal biometric recognition system based on fusion of iris, fingerprint and hand written signature traits, Turkish Journal of Computer and Mathematics Education 12(11) (2021), 1627-1640. [33] S. A. Haider, Y. Rehman and S. U. Ali, Enhanced multimodal biometric recognition based upon intrinsic hand biometrics, Electronics 9(11) (2020), 1916. [34] K. W. Tse and K. Hung, Framework for user behavioural biometric identification using a multimodal scheme with keystroke trajectory feature and recurrent neural network on a mobile platform, IET Biometrics 11(2) (2022), 157-170. [35] M. J. Hamayel and A. Y. Owda, A novel cryptocurrency price prediction model using GRU, LSTM and Bi-LSTM machine learning algorithms, AI 2(4) (2021), 477-496. [36] M. Z. Alom, M. Hasan, C. Yakopcic, T. M. Taha and V. K. Asari, Improved inception-residual convolutional neural network for object recognition, Neural Computing and Applications 32 (2020), 279-293. [37] S. A. El_Rahman and A. S. Alluhaidan, Enhanced multimodal biometric recognition systems based on deep learning and traditional methods in smart environments, PloS ONE 19(2) (2024), eo291084.
|