Keywords and phrases: slip condition, heat source, chemical reaction, melting heat, bvp4c.
Received: October 6, 2024; Accepted: November 21, 2024; Published: November 30, 2024
How to cite this article: Syed Abdul Khadar Jilani, P. R. Sobhana Babu, Ch. Suresh Kumar, K. Sreenivasulu, A. Kiran Kumar and D. Srinivasa Rao, The impression of inclined magnetic field on Maxwell fluid over a stretching cylinder with melting heat, JP Journal of Heat and Mass Transfer 37(6) (2024), 861-886. https://doi.org/10.17654/0973576324053
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] J. C. Maxwell, IV, On the dynamical theory of gases, Philosophical Transactions of the Royal Society of London 157 (1867), 49-88. [2] K. Sadeghy, A. H. Najafi and M. Saffaripour, Sakiadis flow of an upper-convected Maxwell fluid, International Journal of Non-Linear Mechanics 40(9) (2005), 1220-1228. [3] S. Mukhopadhyay, P. Ranjan De and G. C. Layek, Heat transfer characteristics for the Maxwell fluid flow past an unsteady stretching permeable surface embedded in a porous medium with thermal radiation, Journal of Applied Mechanics and Technical Physics 54 (2013), 385-396. [4] S. Nadeem, S. Akhtar and N. Abbas, Heat transfer of Maxwell base fluid flow of nanomaterial with MHD over a vertical moving surface, Alexandria Eng. J. 59(3) (2020), 1847-1856. [5] R. Sharma, S. M. Hussain, C. S. K. Raju, G. S. Seth and A. J. Chamkha, Study of graphene Maxwell nanofluid flow past a linearly stretched sheet: A numerical and statistical approach, Chinese Journal of Physics 68 (2020), 671-683. [6] S. Nadeem, A. Amin, N. Abbas, A. Saleem, F. M. Alharbi, A. Hussain and A. Issakhov, Effects of heat and mass transfer on stagnation point flow of micropolar Maxwell fluid over Riga plate, Scientia Iranica 28(6) (2021), 3753-3766. [7] R. N. Kumar, A. M. Jyothi, H. Alhumade, R. P. Gowda, M. M. Alam, I. Ahmad and B. C. Prasannakumara, Impact of magnetic dipole on thermophoretic particle deposition in the flow of Maxwell fluid over a stretching sheet, Journal of Molecular Liquids 334 (2021), 116494. [8] R. P. Gowda, A. Rauf, R. Naveen Kumar, B. C. Prasannakumara and S. A. Shehzad, Slip flow of Casson-Maxwell nanofluid confined through stretchable disks, Indian Journal of Physics 96(7) (2022), 2041-2049. [9] R. N. Kumar, R. P. Gowda, A. M. Abusorrah, Y. M. Mahrous, N. H. Abu-Hamdeh, A. Issakhov and B. C. Prasannakumara, Impact of magnetic dipole on ferromagnetic hybrid nanofluid flow over a stretching cylinder, Physica Scripta 96(4) (2021), 045215. [10] R. Naveen Kumar, R. J. Punith Gowda, G. D. Prasanna, B. C. Prasannakumara, K. S. Nisar and W. Jamshed, Comprehensive study of thermophoretic diffusion deposition velocity effect on heat and mass transfer of ferromagnetic fluid flow along a stretching cylinder, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 235(5) 2021, 1479-1489. [11] R. S. Varun Kumar, R. J. Punith Gowda, R. Naveen Kumar, M. Radhika and B. C. Prasannakumara, Two-phase flow of dusty fluid with suspended hybrid nanoparticles over a stretching cylinder with modified Fourier heat flux, SN Applied Sciences 3 (2021), 1-9. [12] N. Benaziza, M. K. Nacereddine, M. Kezzar, M. R. Sari, K. Khounfais and M. R. Eid, Entropy generation in magneto-nanofluid flow between two coaxial cylinders by using a new i-adm technique, Computational Thermal Sciences: An International Journal 13(6) (2021). [13] M. R. Eid, A. F. Al-Hossainy and M. S. Zoromba, FEM for blood-based SWCNTs flow through a circular cylinder in a porous medium with electromagnetic radiation, Communications in Theoretical Physics 71(12) (2019), 1425. [14] W. Jamshed, M. R. Eid, S. M. Hussain, A. Abderrahmane, R. Safdar, O. Younis and A. A. Pasha, Physical specifications of MHD mixed convective of Ostwald-de Waele nanofluids in a vented-cavity with inner elliptic cylinder, International Communications in Heat and Mass Transfer 134 (2022), 106038. [15] R. J. Punith Gowda, R. Naveen Kumar and B. C. Prasannakumara, Two-phase Darcy-Forchheimer flow of dusty hybrid nanofluid with viscous dissipation over a cylinder, International Journal of Applied and Computational Mathematics 7(3) (2021), 95. [16] M. Khan, M. Irfan, W. A. Khan and M. Sajid, Consequence of convective conditions for flow of Oldroyd-B nanofluid by a stretching cylinder, Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (2019), 1-14. [17] J. B. J. Fourier, Théorie analytique de la chaleur, Vol. 1, Gauthier-Villars, 1888. [18] C. Cattaneo, Sulla conduzione del calore, Atti. Sem. Mat. Fis. Univ. Modena 3 (1948), 83-101. [19] B. Straughan, Thermal convection with the Cattaneo-Christov model, International Journal of Heat and Mass Transfer 53(1-3) (2010), 95-98. [20] M. Ciarletta and B. Straughan, Uniqueness and structural stability for the Cattaneo-Christov equations, Mechanics Research Communications 37(5) (2010), 445-447. [21] M. Mustafa, Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid, Aip Advances 5(4) (2015). [22] J. Ahmad Khan, M. Mustafa, T. Hayat and A. Alsaedi, Numerical study of Cattaneo-Christov heat flux model for viscoelastic flow due to an exponentially stretching surface, PLOS One 10(9) (2015), e0137363. [23] M. Sohail and R. Naz, Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder, Physica A: Statistical Mechanics and its Applications 549 (2020), 124088. [24] M. I. Khan and F. Alzahrani, Cattaneo-Christov Double Diffusion (CCDD) and magnetized stagnation point flow of non-Newtonian fluid with internal resistance of particles, Physica Scripta 95(12) (2020), 125002. [25] M. Khan, A. Ahmed, M. Irfan and J. Ahmed, Analysis of Cattaneo-Christov theory for unsteady flow of Maxwell fluid over stretching cylinder, Journal of Thermal Analysis and Calorimetry 144 (2021), 145-154. [26] M. Irfan, M. Khan and W. A. Khan, Impact of homogeneous-heterogeneous reactions and non-Fourier heat flux theory in Oldroyd-B fluid with variable conductivity, Journal of the Brazilian Society of Mechanical Sciences and Engineering 41(3) (2019), 135.
|