Keywords and phrases: magnetic field, wavy surface, vertical cone, natural convection, viscous fluid.
Received: August 29, 2024; Revised: October 8, 2024; Accepted: October 30, 2024; Published: November 30, 2024
How to cite this article: Rasha Adel, The effect of magnetic parameter over a vertical wavy surfaced right circular cone in presence of natural convection, JP Journal of Heat and Mass Transfer 37(6) (2024), 807-829. https://doi.org/10.17654/0973576324050
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] Rasha Adel, Emad M. Abo-El Dahab, Hoda M. Mobarak and M. Abdelhakem, The magnetic field effects on boundary layer of a nano-fluid flow through stretching plate, Applied Mathematics and Information Sciences 15(6) (2021), 731-741. [2] E. M. Abo-Eldahab, R. Adel, M. Abdelhakem and Fatma M. Diab, The effect of thermal flux and magnetic field on nano-fluid through shrinking/stretching sheet, Current Science International 11(3) (2022), 291-309. [3] Rasha Adel, MHD of the natural convection through an upright wavy surface with porous media, Journal of Applied Mathematics and Physics 10 (2022), 3288-3300. [4] Bourhan Tashtoush and M. Al-Odat, Magnetic field effect on heat and fluid flow over a wavy surface with a variable heat flux, Journal of Magnetism and Magnetic Materials 268(3) (2004), 357-363. [5] Pei-Yiong, Khurram Javid, Mohsin Raza, Sami Ullah Khan, M Ljaz Khan and Yu-Ming Chu, MHD flow study of viscous fluid through a complex wavy curved surface due to bio-mimetic propulsion under porosity and second order slip effects, Communications in Theoretical Physics 73 (2021), 8. [6] K. Zimmermann, I. Zeidis, V. A. Naletova and V. A. Turkov, Waves on the surface of a magnetic fluid layer in a traveling magnetic field, Journal of Magnetism and Magnetic Materials 268(1-2) (2004), 227-231. [7] M. C. Shen, S. M. Sun and R. E. Meyer, Surface curvy on viscous magnetic fluid flow down an inclined plate, Physics of Fluid Journal 3 (1991), 439-445. [8] Bal Govind Srivastava and Satya Deo, Effect of field of magnetic on flow with porous media in a channel filled with viscous fluid of variable permeability, Applied Computation and Mathematics 219(17) (2013), 8959-8964. [9] Kazi Kabir, Md A. Alim and Laek S. Andallah, Effect of viscous dissipation on MHD natural convection flow along a vertical wavy surface, Journal of Theoretical and Applied Physics 7(31) (2013). https://doi.org/10.1186/2251-7235-7-31. [10] Anum Tanveer and Zain Ul Abidin, Connective and magnetic effects in a curved wavy channel with nano-particles under different waveforms, Journal of Mechanical Behavior of Materials 2023. https://doi.org/10.1515/jmbm-2022-0256. [11] Mohammad Hasan Taheri, The influence of magnetic field on the fluid flow in the entrance region of channels: analytical/numerical solution, SN Applied Sciences 1 (2019), 1233. https://doi.org/10.1007/s42452-019-1244-3. [12] Vishal Chhabra, Chandra Shekhar Nishad and Manoj Sahni, Effect of magnetic field on viscous flow through composite porous channel using boundary element method, Journal of Applied and Computational Mechanics 9(4) (2023), 1016-1035. Doi:10.22055/jacm.2023.43024.4006. [13] A. Mokhefi and E. R. di Schio, Effect of a magnetic field on the Couette forced convection of a Buongiono’s nanofluid over an embedded cavity, JP Journal of Heat and Mass Transfer 30 (2022), 89-104. [14] Kaouther Ghachem, Fatih Selimefendigil, Badr M. Alshammari, Chemseddine Maatki and Lioua Kolsi, Coupled effect of using field of magnetic, wavy porous layer and rotation on the convection by force of hybrid nano-liquid flow through 3-D backward facing step, Nanomaterial (Basel) 12(14) (2022), 2466. DOI:10.3390/Nano 12142466. [15] K. H. Kabir, M. A. Alim and L. S. Andallah, Effects of viscous dissipation on MHD natural convection flow along a vertical wavy surface with heat generation, American Journal of Computational Mathematics 3(2) (2013), 91-98. http://dx.doi.org/10.4236/ajcm.2013.32015. [16] Lijun Zhang, Nafisa Tariq and M. M. Bhatti, Study of nonlinear quadratic convection on magnetized viscous fluid flow over a non-Darcian circular elastic surface via spectral approach, Journal of Taibah University for Science 17(1) (2023), 2183702. https://doi.org/10.1080/16583655.2023.2183702. [17] A. Mahdy, R. A. Mohamed and Fikry Hady, Influence of convection naturally and field of magnetic near a curvy cone in porous medium, Latin American Applied Research - an International Journal 38(2) (2008), 155-160. [18] R. Rafaqat, A. A. Khan, A. Zaman, F. Mabood and I. A. Badruddin, Magneto-hydrodynamics second grade compressible fluid flow in a wavy channel under peristalsis: Application to thermal energy, Journal of Energy Storage 51 (2022), 104463. [19] N. A. Rahman, N. S. Khashi’ie, K. B. Hamzah, N. A. Zainal, I. Waini and I. Pop, Axisymmetric hybrid nanofluid flow over a radially shrinking disk with heat generation and magnetic field effects, JP Journal of Heat and Mass Transfer 37(3) (2024), 365-375. [20] R. Rafaqat and A. A. Khan, The influence of both of magnetic field and porosity on compressible flow, International Journal of Modern Physics B 38(19) (2024), 2450246. DOI:10.1142/s0217979224502461. [21] Md. Anwar Hossain, Md. Sazzad Munir and Ioan Pop, Viscous fluid natural convection flow with the temperature linear function inversely proportional to viscosity from an upright wavy cone, International Journal Therm. Sci. 40 (2001), 366-371. [22] D. A. S. Rees, S. Kabir and M. A. Hossain, The natural convection impact with varied viscosity through heated vertical wavy surface, Z. Angew. Math. Phys. 53 (2002), 48-52. [23] M. A. Hossain, M. S. Munir and H. S. Takhar, The viscous fluid natural convection flow through a slight cone through thermal conductivity and temperature dependent viscosity, Acta Mech. 140 (2000), 171-181. [24] J. X. Ling and A. Dybbs, Forced Convection Above a Flat Plate Immersed in Porous Media: Variable Viscosity, ASME, Paper 87-WA / HT-23, New York, 1987. [25] L. S. Yao, Natural convection through an upright curvy plate, ASME J. Heat Transfer 105 (1983), 465-468. [26] Nazma Parveen and Md. Abdul Alim, Effect of temperature dependent variable viscosity of magneto-hydrodynamic natural convection flow along a vertical wavy surface, International Scholarly Research Notices 2011, Article ID 505673, 10 pp. DOI: 10.5402/2011/505673. [27] Rida Rafaqat and Ambreen Afsar Khan, Thermal analysis o f compressible flow in an asymmetric channel with joule heating, Journal of Thermal Analysis and Calorimetry 148 (2023), 14243-14252. DOI:10.1007/s10973-023-12585-4. [28] J. L. Ramaprasad, K. S. Balamurugan and G. Dharmaiah, Unsteady MHD convective heat and mass transfer flow past an inclined moving surface with heat absorption, JP Journal of Heat and Mass Transfer 13(1) (2016), 33-51. [29] Mamun Malla, Anwar Hassain and Lun-Shin Yao, Natural-convection flow through a normal complex curvy plate with uniform heat flux, ASME Journal of Mass and Heat Transfer 129(10) (2007), 1403-1407. [30] Ambreen Afsar Khan, Saliha Zafar, Aziz Khan and Thabet Abdeljawad, The influence thermal conductivity and viscosity on tangent hyperbolic nano-fluid flow over a vertical cone, Modern Physics Letters B. DOI: 10.1142/s0217984924503986. [31] Atifa Kanwal and Ambreen Afsar Khan, The effective of radiation on conductive dusty Walter’s B fluid trough an asymmetric channel, Alexandria Engineering Journal 106 (2024), 646-653. DOI:10.1016/j.aej.2024.08-057. [32] Richard H. Pletcher Tannehill, C. John and Dale A. Anderson, Computational transfer for Heat and Mechanics of Fluid, Taylor & Francis, 1997. [33] D. A. S. Rees and I. Pop, Free convection above an upright wavy surface with porous media, ASME Heat Transfer Journal 116 (1994), 505-508. [34] S. G. Moulic and L. S. Yao, Natural convection along a surface of vertical wavy for uniform heat flux, ASME Heat Transfer Journal 111 (1989), 1106-1108.
|