Keywords and phrases: independent metric dimension, coconut tree, extended jewel graph.
Received: August 28, 2024; Revised: October 9, 2024; Accepted: October 30, 2024; Published: November 29, 2024
How to cite this article: Yasser M. Hausawi, Mohammed El-Meligy, Zaid Alzaid, Olayan Alharbi, Badr Almutairi and Basma Mohamed, Independent metric dimension of coconut tree and extended jewel graph, Advances and Applications in Discrete Mathematics 42(2) (2025), 97-112. https://doi.org/10.17654/0974165825008
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] G. Chartrand, L. Eroh, M. A. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105(1-3) (2000), 99-113. [2] P. J. Slater, Domination and location in acyclic graphs, Networks 17(1) (1987), 55-64. [3] S. J. Seo and P. J. Slater, Open neighborhood locating dominating sets, Australas. J. Combin. 46 (2010), 109-120. [4] R. C. Brigham, G. Chartrand, R. D. Dutton and P. Zhang, Resolving domination in graphs, Math. Bohem. 128(1) (2003), 25-36. [5] M. Xiao and H. Nagamochi, Exact algorithms for maximum independent set, Inform. and Computation 255 (2017), 126-146. [6] M. Xiao and H. Nagamochi, An exact algorithm for maximum independent set in degree-5 graphs, Discrete Appl. Math. 199 (2016), 137-155. [7] F. Kuhn, T. Moscibroda, T. Nieberg and Wattenhofer, Fast deterministic distributed maximal independent set computation on growth-bounded graphs, Distributed Computing: 19th International Conference, DISC 2005, Cracow, Poland, September 26-29, 2005, Proceedings 19, Springer Berlin Heidelberg, 2005, pp. 273-287. [8] B. Sooryanarayana and A. S. Suma, On classes of neighborhood resolving sets of a graph, Electronic Journal of Graph Theory and Applications (EJGTA) 6(1) (2018), 29-36. [9] D. Fitriani, A. Rarasati, S. W. Saputro and E. T. Baskoro, The local metric dimension of split and unicyclic graphs, Indonesian Journal of Combinatorics 6(1) (2022), 50-57. [10] H. Fernau, P. Heggernes, P. Van’t Hof, D. Meister and R. Saei, Computing the metric dimension for chain graphs, Inform. Process. Lett. 115(9) (2015), 671-676. [11] R. F. Bailey and P. J. Cameron, Base size, metric dimension and other invariants of groups and graphs, Bull. London Math. Soc. 43(2) (2011), 209-242. [12] A. Kelenc, N. Tratnik and I. G. Yero, Uniquely identifying the edges of a graph: the edge metric dimension, Discrete Appl. Math. 251 (2018), 204-220. [13] C. Yang, X. Deng and W. Li, On the local metric dimension of line graphs, Journal of Interconnection Networks (2023), 2350026. [14] M. Anandha Jothi and K. Sankar, On the metric dimension of bipartite graphs, AKCE Int. J. Graphs Comb. 20(3) (2023), 287-290. [15] L. Susilowati, I. W. Mufidah and N. Estuningsih, The dominant metric dimension of generalized Petersen graph, AIP Conf. Proc. 2975(1) (2023), 020005. [16] T. Mazidah, I. H. Agustin and R. Nisviasari, Resolving independent domination number of some special graphs, Journal of Physics: Conference Series 1832(1) (2021), 012022. [17] P. Dankelmann, J. Morgan and E. Rivett-Carnac, Metric dimension and diameter in bipartite graphs, Discuss. Math. Graph Theory 43 (2021), 487. [18] B. Suganya and S. Arumugam, Independent resolving sets in graphs, AKCE Int. J. Graphs Comb. 18(2) (2021), 106-109. [19] G. Chartrand, V. Saenpholphat and P. Zhang, The independent resolving number of a graph, Math. Bohem. 128(4) (2003), 379-393. [20] B. Suganya and S. Arumugam, Independent resolving number of convex polytopes, Theoretical Computer Science and Discrete Mathematics: First International Conference, ICTCSDM 2016, Krishnankoil, India, December 19-21, 2016, Revised Selected Papers 1, Springer International Publishing, 2017, pp. 401-408. [21] A. Asiri and B. Mohamed, Binary fruit fly optimization algorithm for counting the number of spanning trees in networks, Advances and Applications in Discrete Mathematics 41(8) (2024), 663-676. [22] R. F. Bailey, J. Cáceres, D. Garijo, A. González, A. Márquez, K. Meagher and M. L. Puertas, Resolving sets for Johnson and Kneser graphs, European J. Combin. 34(4) (2013), 736-751. [23] S. Almotairi, O. Alharbi, Z. Alzaid, B. Almutairi and B. Mohamed, The secure metric dimension of the globe graph and the flag graph, Advances in Operations Research 2024(1) (2024), 3084976. [24] B. Mohamed and M. Amin, Enumeration of the number of spanning trees of the globe network and its subdivision, International Journal on Applications of Graph Theory in Wireless Ad hoc Networks and Sensor Networks (GRAPH-HOC) 15(3) (2023), 1-7. [25] B. Mohamed, A comprehensive survey on the metric dimension problem of graphs and its types, International Journal of Theoretical and Applied Mathematics 9(1) (2023), 1-5. [26] Z. Jiang and N. Polyanskii, On the metric dimension of Cartesian powers of a graph, J. Combin. Theory Ser. A 165 (2019), 1-14. [27] B. Mohamed and M. Amin, The metric dimension of subdivisions of Lilly graph, tadpole graph and special trees, Appl. Comput. Math. 12(1) (2023), 9-14. [28] S. Sriram and D. R. Govindarajan, Permutation labeling of joins of kite graph, International Journal of Computer Engineering and Technology 10(3) (2020), 1-8. [29] N. P. Shrimali and A. K. Rathod, Vertex-edge neighborhood prime labeling of some trees, South East Asian J. Math. Math. Sci. 16(3) (2020), 207-218. [30] B. Mohamed and M. Amin, Domination number and secure resolving sets in cyclic networks, Appl. Comput. Math. 12(2) (2023), 42-45. [31] M. U. Farooq, A. U. Rehman, T. Q. Ibrahim, M. Hussain, A. H. Ali and B. Rashwani, Metric dimension of line graphs of bakelite and subdivided bakelite network, Discrete Dynamics in Nature and Society 2023(1) (2023), 7656214. [32] V. Sharma and A. Parthiban, Double divisor cordial labeling of graphs, Journal of Physics: Conference Series 2267(1) (2022), 012026. [33] V. Govindan and S. Dhivya, Difference labelling of jewel graph, International Journal of Mathematics Trends and Technology-IJMTT 65 (2019), 64-68.
|