Keywords and phrases: deep learning, long short term memory, convolutional neural network, seismological characterization, earthquake detection.
Received: October 14, 2024; Accepted: November 7, 2024; Published: November 13, 2024
How to cite this article: Manka Vasti and Amita Dev, Deep learning-based classification of seismic events using waveform data, Advances and Applications in Discrete Mathematics 42(1) (2025), 17-45. https://doi.org/10.17654/0974165825002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] P. Mohan and H. Mittal, Review of ICT usage in disaster management, Int. J. Inf. Technol. 12 (2020), 955-962. https://doi.org/10.1007/s41870-020-00468-y. [2] N. Balayesu and H. K. Kalluri, An extensive survey on traditional and deep learning-based face sketch synthesis models, Int. J. Inf. Technol. 12 (2020), 995-1004. https://doi.org/10.1007/s41870-019-00386-8. [3] M. K. Gupta and P. Chandra, A comprehensive survey of data mining, Int. J. Inf. Technol. 12 (2020), 1243-1257. https://doi.org/10.1007/s41870-020-00427-7. [4] R. Allen, Automatic phase pickers: their present use and future prospects, Bulletin of the Seismological Society of America 72(6B) (1982), S225-S242. [5] C. Chen and A. A. Holland, PhasePApy: a robust pure Python package for automatic identification of seismic phases, Seismological Research Letters 87(6) (2016), 1384-1396. https://doi.org/10.1785/0220160019. [6] D. J. Pugh, R. S. White and P. A. F. Christie, Automatic Bayesian polarity determination, Geophysical Journal International 206(1) (2016), 275-291. https://doi.org/10.1093/gji/ggw146. [7] M. K. Kachakhidze, N. K. Kachakhidze and T. D. Kaladze, A model of the generation of electromagnetic emissions detected prior to earthquakes, Physics and Chemistry of the Earth 85-86 (2015), 78-81. [8] N. Venkatanathan, V. Hareesh and W. S. Venkatesh, Observation of earthquake precursors - a study on OLR scenario prior to the earthquakes of Indian and neighboring region occurred in 2016, International Journal of Earth Sciences and Engineering 9(3) (2016), 264-268. [9] R. D. Cicerone, J. E. Ebel and J. Britton, A systematic compilation of earthquake precursors, Tectonophysics 476 (2009), 371-396. doi:10.1016/j.tecto.2009.06.008. [10] Q. Kong, D. T. Trugman, Z. E. Ross, M. J. Bianco, B. J. Meade and P. Gerstoft, Machine learning in seismology: turning data into insights, Seismological Research Letters 90(1) (2018), 3-14. doi: https://doi.org/10.1785/0220180259. [11] S. Gentili and A. Michelini, Automatic picking of P and S phases using a neural tree, Journal of Seismology 10(1) (2006), 39-63. https://doi.org/10.1007/s10950-006-2296-6. [12] P. Jiao and A. H. Alavi, Artificial intelligence in seismology: advent, performance and future trends, Geoscience Frontiers 11 (2020), 739-744. https://doi.org/10.1016/j.gsf.2019.10.004. [13] R. S. Yadav, Data analysis of COVID-2019 epidemic using machine learning methods: a case study of India, Int. J. Inf. Technol. 12 (2020), 1321-1330. https://doi.org/10.1007/s41870-020-00484-y. [14] P. Nair, N. Khatri and I. Kashyap, A novel technique: ensemble hybrid 1NN model using stacking approach, Int. J. Inf. Tecnol. 12 (2020), 683-689. https://doi.org/10.1007/s41870-018-0109-0. [15] A. Panakkat and H. Adeli, Recent efforts in earthquake prediction (1990-2007), Natural Hazards Review 9(2) (2008), 70-80. https://doi.org/10.1061/(ASCE)1527-6988(2008)9:2(70). [16] P. M. R. DeVries, F. Viégas, M. Wattenberg and B. J. Meade, Deep learning of aftershock patterns following large earthquakes, Nature Springer 560 (2018), 632-639. doi: 10.1038/s41586-018-0438-y. [17] K. V. Kislov and V. V. Gravirov, Deep artificial neural networks as a tool for the analysis of seismic data, Seismic Instruments 54(1) (2018), 8-16. [18] Z. E. Ross, Y. Yue, M.-A. Meier, E. Hauksson and T. H. Heaton, PhaseLink: a deep learning approach to seismic phase association, Journal of Geophysical Research: Solid Earth 124 (2019), 856-869. https://doi.org/10.1029/2018JB016674. [19] A. Bhatia, Sumanta Pasari and A. Mehta, Earthquake forecasting using artificial neural networks, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-5 (2018), 823-827. https://doi.org/10.5194/isprs- archives-XLII-5-823-2018. [20] F. Külahci, M. Inceoz, M. Doğru, E. Aksoy and O. Baykara, Artificial neural network model for earthquake prediction with radon monitoring, Applied Radiation and Isotopes 67(1) (2009), 212-219. https://doi.org/10.1016/j.apradiso.2008.08.003. [21] A. Negarestani, S. Setayeshi, M. Ghannadi-Maragheh and B. Akashe, Layered neural networks-based analysis of radon concentration and environmental parameters in earthquake prediction, J. Environ. Radioact. 62(3) (2002), 225-233. doi: 10.1016/s0265-931x(01)00165-5. [22] T. Kalaiselvi et al., Deriving tumor detection models using convolutional neural networks from MRI of human brain scans, Int. J. Inf. Tecnol. 12 (2020), 403-408. https://doi.org/10.1007/s41870-020-00438-4. [23] A. Kohler, M. Ohrnberger and F. Scherbaum, Unsupervised pattern recognition in continuous seismic wavefield records using self-organizing maps, Geophysical Journal International 182 (2010), 1619-1630. doi: 10.1111/j.1365- 246X.2010.04709.x. [24] M. Ibrahim and B. Al-Bander, An integrated approach for understanding global earthquake patterns and enhancing seismic risk assessment, International Journal of Information Technology 16 (2024), 2001-2014. https://doi.org/10.1007/s41870-024-01778-1. [25] H. Takahashi, K. Tateiwa, K. Yano and M. Kano, A conventional neural network-based classification of local earthquakes and tectonic tremors in Sanriku-oki, Japan, using S-net, Earth, Planets and Space 73 (2021), Article number 186. https://doi.org/10.1186/s40623-021-01524-y. [26] M. Vasti and A. Dev, Classification and analysis of real-world earthquake data using various machine learning algorithms, Advances in Data Sciences, Security and Applications, Lecture Notes in Electrical Engineering, Springer, Singapore, Vol. 612, 2020. [27] T. Perol, M. Gharbi and M. Denolle, Convolutional neural network for earthquake detection and location, Science Advances 4(2) (2018), e1700578. doi: 10.1126/sciadv.1700578. [28] F. Magrini, D. Jozinović, F. Cammarano, A. Michelini and L. Boschi, Local earthquakes detection: a benchmark dataset of 3-component seismograms built on a global scale, Artificial Intelligence in Geosciences 1(1) (2020), 1-10. https://doi.org/10.1016/j.aiig.2020.04.001. [29] R. M. Vidya and M. Ramakrishna, An adaptive learning paradigm: event detection through a novel dynamic arithmetic optimization-based ensemble SVM for data stream classification, International Journal of Information Technology 16(5) (2024), 3049-3055. https://doi.org/10.1007/s41870-024-01832-y. [30] M. Chakraborty, D. Fenner, W. Li, J. Faber, K. Zhou, G. Rümpker, H. Stoecker and N. Srivastava, CREIME - a convolutional recurrent model for earthquake identification and magnitude estimation, 2022. arXiv preprint arXiv:2204.02924. Retrieved from https://arxiv.org/abs/2204.02924. [31] S. M. Mousavi, W. Zhu, Y. Sheng and G. C. Beroza, CReD: a deep residual network of convolutional and recurrent units for earthquake signal detection, Scientific Reports 9(1) (2019), Article No. 10267. https://doi.org/10.1038/s41598-019-45748-1. [32] H. Fukada et al., Proposal and evaluation of tsunami disaster drill support system using tablet computer, International Journal of Information Technology 15 (2023), 4029-4039. https://doi.org/10.1007/s41870-023-01465-7. [33] A. Mishra and L. Goel, An ocean water current-inspired geoscience based optimization algorithm, International Journal of Information Technology 16 (2024), 2619-2633. https://doi.org/10.1007/s41870-023-01683-z. [34] J. Schmidhuber, Deep learning in neural networks: an overview, Neural Networks 61 (2015), 85-117. https://doi.org/10.1016/j.neunet.2014.09.003. [35] K. Alfalqi and M. Bellaiche, Emergency events detection based on integration of federated learning and active learning, International Journal of Information Technology 15 (2023), 2863-2876. https://doi.org/10.1007/s41870-023-01307-6. [36] Q. Zhu and Y. Su, Application of ANN to prediction of earthquake influence, 2011 Fourth International Conference on Information and Computing, Manchester, England, UK, 2009, pp. 234-237. doi:10.1109/ICIC.2009.169. [37] G. Romeo, Seismic signals detection and classification using artificial neural networks, Annals of Geophysics 37(3) (1994), 343-353. [38] S. M. Mousavi, S. P. Horton, C. A. Langston and B. Samei, Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression, Geophysical Journal International 207(1) (2016), 29-46. https://doi.org/10.1093/GJI/GGW258. [39] A. S. N. Alarifi, N. S. N. Alarifi and S. Al-Humidan, Earthquakes magnitude predication using artificial neural network in northern Red Sea area, Journal of King Saud University-Science 24(4) (2012), 301-313. https://doi.org/10.1016/j.jksus.2011.05.002. [40] F. Magrini, D. Jozinović, F. Cammarano, A. Michelini and L. Boschi, Local earthquakes detection: a benchmark dataset of 3-component seismograms built on a global scale, Artificial Intelligence in Geosciences 1 (2020), 1-10. https://doi.org/10.1016/j.aiig.2020.04.001. [41] X. Wu, L. Liang, Y. Shi and S. Fomel, FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation, GEOPHYSICS 84(3) (2019), IM35-IM45. https://doi.org/10.1190/GEO2018-0646.1. [42] S. M. Mousavi, Y. Sheng, W. Zhu and G. C. Beroza, STanford EArthquake Dataset (STEAD): a global data set of seismic signals for AI, IEEE Access 7 (2019). DOI: 10.1109/ACCESS.2019.2947848. [43] HelMUG (Helicoidal Model User Group), Seisbench: a benchmarking toolbox for seismic waveform analysis (Version 1.0) [Software] (2021). GitHub.https://github.com/seisbench/seisbench. https://doi.org/10.1007/978-981-15-0372-6_1. [44] M. Beyreuther, R. Barsch, L. Krischer, T. Megies, Y. Behr and J. Wassermann, ObsPy: a Python toolbox for seismology, Seismological Research Letters 81(3) (2010), 530-533. https://doi.org/10.1785/gssrl.81.3.530. [45] R. Abri and H. Artuner, LSTM-based deep learning methods for prediction of earthquakes using ionospheric data, Gazi University Journal of Science 35(4) (2022), 1417-1431. https://doi.org/10.35378/gujs.950387.
|