Keywords and phrases: sums of powers of integers, symmetry property of the power sum polynomials, dual recursive formulas
Received: September 16, 2024; Revised: October 16, 2024; Accepted: October 21, 2024; Published: October 24, 2024
How to cite this article: José L. Cereceda, Dual recursive formulas for the sums of powers of integers, Far East Journal of Mathematical Education 26(2) (2024), 111-121. http://dx.doi.org/10.17654/0973563124012
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] T. M. Apostol, A primer on Bernoulli numbers and polynomials, Mathematics Magazine 81(3) (2008), 178-190. [2] J. L. Cereceda, On a recurrence relation for the sums of powers of integers, Far East Journal of Mathematical Education 24 (2023), 45-50. [3] J. L. Cereceda, Sums of powers of integers and Stirling numbers, Resonance 27(5) (2022), 769-784. [4] H. Eba, Sums of powers of integers, Missouri Journal of Mathematical Sciences 31(1) (2019), 66-78. [5] E. G. Eigel, Jr., Sums of powers of integers, Pi Mu Epsilon Journal 4(1) (1964), 7 10. [6] M. El-Mikkawy and F. Atlan, Notes on the power sum Annals of Pure and Applied Mathematics 9(2) (2015), 215-232. [7] R. Farhadian, A probabilistic proof of a recursion formula for sums of integer powers, Integers 23 (2023), Article #A88. [8] J. D. Greene, To compute sum of integers raised to powers, The Mathematical Gazette 68(446) (1984), 278-280. [9] R. Hersh, Why the Faulhaber polynomials are sums of even or odd powers of The College Mathematics Journal 43(4) (2012), 322-324. [10] K. Hirose, Computing sums of powers of integers with the hockey-stick identity and the Stirling numbers, The College Mathematics Journal 55(3) (2024), 247 249. [11] F. T. Howard, Sums of powers of integers, Mathematical Spectrum 26(4) (1993/1994), 103-109. [12] X. Hu and Y. Zhong, A probabilistic proof of a recursion formula for sums of powers, The American Mathematical Monthly 127(2) (2020), 166-168. [13] K. Kanim, Proof without words: How did Archimedes sum squares in the sand?, Mathematics Magazine 74(4) (2001), 314-315. [14] K. Kanim, Proof without words: The sum of cubes—An extension of Archimedes’ sum of squares, Mathematics Magazine 77(4) (2004), 298-299. [15] C. Kelly, An algorithm for sums of integer powers, Mathematics Magazine 57(5) (1984), 296-297. [16] T. C. T. Kotiah, Sums of powers of integers—A review, International Journal of Mathematical Education in Science and Technology 24(6) (1993), 863-874. [17] R. S. Luthar, A simple way of evaluating Pi Mu Epsilon Journal 6(5) (1976), 282-284. [18] N. J. Newsome, M. S. Nogin and A. H. Sabuwala, A proof of symmetry of the power sum polynomials using a novel Bernoulli number identity, Journal of Integer Sequences 20 (2017), Article 17.6.6. [19] J. Quaintance and H. W. Gould, Combinatorial identities for Stirling numbers, The unpublished notes of H. W. Gould, World Scientific Publishing, Singapore, 2016. [20] M. Z. Spivey, The Art of Proving Binomial Identities, CRC Press/Taylor & Francis Group, Boca Raton, 2019. [21] B. Turner, Sums of powers of integers via the binomial theorem, Mathematics Magazine 53(2) (1980), 92-96.
|