Keywords and phrases: nanomaterials, biomaterials, composites, organic materials, inorganic materials, intumescents, leaching, ignition time
Received: September 4, 2024; Accepted: September 19, 2024; Published: October 4, 2024
How to cite this article: Radhakrishnaiah Parachuru, Eco-friendly flame retardant materials, their application techniques and end-use performance - a summary of recent research work, International Journal of Materials Engineering and Technology 23(2) (2024), 101-117. https://doi.org/10.17654/0975044424006
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] Giulio Malucelli, Francesca Bosco, Jenny Alongi, Federico Carosio, Alessandro Di Blasio, Chiara Mollea, Fabio Cuttica and Annalisa Casale, Biomacromolecules as novel green flame retardant systems for textiles: an overview, RSC Advances 4(86) (2014), 46024-46039. https://doi.org/10.1039/C4RA06771A. [2] Lucie Costes, Fouad Laoutid, Sylvain Brohez and Philippe Dubois, Bio-based flame retardants: when nature meets fire protection, Materials Science and Engineering: R: Reports 117 (2017), 1-25. https://doi.org/10.1016/j.mser.2017.04.001. [3] Ankita Hazarika, Prasanta Baishya and Tarun K. Maji, Bio-based wood polymer nanocomposites: A sustainable high-performance material for future, Vijay Kumar Thakur and Manju Kumari Thakur, eds., Eco-Friendly Polymer Nanocomposites: Processing and Properties, Springer India, 2015, pp. 233-257. https://doi.org/10.1007/978-81-322-2470-9_8. [4] Parisa Zamani, Omid Zabihi, Mojtaba Ahmadi, Roya Mahmoodi, Thathsarani Kannangara, Paul Joseph and Minoo Naebe, Biobased carbon fiber composites with enhanced flame retardancy: A cradle-to-cradle approach, ACS Sustainable Chemistry & Engineering 10(2) (2022), 1059-1069. https://doi.org/10.1021/acssuschemeng.1c07859. [5] Tharindu Dhanushka Hapuarachchi, Development and characterization of flame retardant nanoparticulate bio-based polymer composites, 2010. https://qmro.qmul.ac.uk/xmlui/handle/123456789/532. [6] Young-O Kim, Jaehyun Cho, Young Nam Kim, Kun Won Kim, Byoung Wan Lee, Jae Woo Kim, Minkook Kim and Yong Chae Jung, Recyclable, flame-retardant and smoke-suppressing tannic acid-based carbon-fiber-reinforced plastic, Composites Part B: Engineering 197 (2020), 108173. https://doi.org/10.1016/j.compositesb.2020.108173. [7] Z. Kovačević, S. Flinčec Grgac and S. Bischof, Progress in biodegradable flame retardant nano-biocomposites, Polymers 13 (2021), 741. https://doi.org/10.3390/polym13050741. [8] Yi Lu, Yaling Jia, Guangxian Zhang and Fengxiu Zhang, An eco-friendly intumescent flame retardant with high efficiency and durability for cotton fabric, Cellulose 25(9) (2018), 5389-5404. https://doi.org/10.1007/s10570-018-1930-0. [9] Chanchal Kumar Kundu, Zhiwei Li, Lei Song and Yuan Hu, An overview of fire- retardant treatments for synthetic textiles: from traditional approaches to recent applications, European Polymer Journal 137 (2020), 109911. https://doi.org/10.1016/j.eurpolymj.2020.109911. [10] A. B. Morgan, and J. W. Gilman, An overview of flame retardancy of polymeric materials: application, technology, and future directions, Fire Mater. 37 (2013), 259-279. https://doi.org/10.1002/fam.2128. [11] Marina Y. Soliman and Ahmed G. Hassabo, Environmentally friendly inorganic materials for anti-flammable cotton fabrics, Journal of Textiles, Coloration and Polymer Science 18(2) (2021), 97-110. https://doi.org/10.21608/jtcps.2021.73914.1058. [12] Meini Yang, Yawen Yang, Junjiao Shi and Wenhui Rao, Fabrication of eco-friendly flame-retardant and hydrophobic coating for cotton fabric, Cellulose 30(5) (2023), 3267-3280. https://doi.org/10.1007/s10570-023-05051-9. [13] Wenhui Rao, Junjiao Shi, Chuanbai Yu, Hai-Bo Zhao and Yu-Zhong Wang, Highly efficient, transparent, and environment-friendly flame-retardant coating for cotton fabric, Chemical Engineering Journal 424 (2021), 130556. https://doi.org/10.1016/j.cej.2021.130556. [14] A. Ghazinezami, A. Jabbarnia and R. Asmatulu, Fire retardancy of polymeric materials incorporated with nanoscale inclusions, American Society of Mechanical Engineers Digital Collection (2014), 6. https://doi.org/10.1115/IMECE2013-66158. [15] A. Richard Horrocks, Flame retardant challenges for textiles and fibers: new chemistry versus innovatory solutions, Polymer Degradation and Stability 96(3) (2011), 377-392. https://doi.org/10.1016/j.polymdegradstab.2010.03.036. [16] Indu Kumari, Sarabjeet Kaur and Ratnesh Das, Green nanomaterials in textile industry, Green Synthesis of Nanomaterials, John Wiley & Sons, Ltd., 2024, pp. 114-130. https://doi.org/10.1002/9781119900931.ch6. [17] Fang Ding, Shumin Zhang, Xiaoyan Chen, Rong Li and Xuehong Ren, PET fabric treated with environmental-friendly phosphorus-based compounds for enhanced flame retardancy, thermal stability and anti-dripping performance, Composites Part B: Engineering 235 (2022), 109791. https://doi.org/10.1016/j.compositesb.2022.109791. [18] Xibiao Zhang, Xian-You Zhou, Xian-Wei Cheng and Ren-Cheng Tang, Phytic acid as an eco-friendly flame retardant for silk/wool blend: A comparative study with fluorotitanate and fluorozirconate, Journal of Cleaner Production 198 (2018), 1044-1052. https://doi.org/10.1016/j.jclepro.2018.07.103. [19] Constantine D. Papaspyrides and Pantelis Kiliaris, Polymer Green Flame Retardants, Newnes, 2014. [20] Dongqiao Zhang, Brandon L. Williams, Jingjing Liu, Zaili Hou, Andrew T. Smith, Sunghyun Nam, Zain Nasir, et al., An environmentally-friendly sandwich-like structured nanocoating system for wash durable, flame retardant, and hydrophobic cotton fabrics, Cellulose 28(16) (2021), 10277-10289. https://doi.org/10.1007/s10570-021-04177-y. [21] TriDung Ngo, Development of sustainable flame-retardant materials, Green Materials 8(3) (2020), 101-122. https://www.icevirtuallibrary.com/doi/full/10.1680/jgrma.19.00060. [22] Hari T. Deo, Nagesh K. Patel and Bharat K. Patel, Eco-friendly flame retardant (FR) pet fibers through P-N synergism, Journal of Engineered Fibers and Fabrics 3(4) (2008), 155892500800300404. https://doi.org/10.1177/155892500800300404. [23] Naresh Kr. Sharma, C. S. Verma, Vijayaraghavan M. Chariar and Rajendra Prasad, Eco-friendly flame-retardant treatments for cellulosic green building materials, Indoor and Built Environment 24(3) (2015), 422-432. https://doi.org/10.1177/1420326X13516655. [24] Rhoda Afriyie Mensah, Vigneshwaran Shanmugam, Sreenivasan Narayanan, Juliana Sally Renner, Karthik Babu, Rasoul Esmaeely Neisiany, Michael Försth, Gabriel Sas and Oisik Das, A review of sustainable and environment-friendly flame retardants used in plastics, Polymer Testing 108 (2022), 107511. https://doi.org/10.1016/j.polymertesting.2022.107511. [25] B.-W. Liu, H.-B. Zhao and Y.-Z. Wang, Advanced flame-retardant methods for polymeric materials, Adv. Mater. 34 (2022), 2107905. https://doi.org/10.1002/adma.202107905. [26] Yun Liu, Cheng-Liang Deng, Jing Zhao, Jun-Sheng Wang, Li Chen and Yu-Zhong Wang, An efficiently halogen-free flame-retardant long-glass-fiber-reinforced polypropylene system, Polymer Degradation and Stability 96(3) (2011), 363-370. https://doi.org/10.1016/j.polymdegradstab.2010.02.033. [27] C. Ling and L. Guo, A novel, eco-friendly and durable flame-retardant cotton-based hyperbranched polyester derivative, Cellulose 27 (2020), 2357-2368. https://doi.org/10.1007/s10570-019-02923-x.
|