Keywords and phrases: TiO2 nanoparticles, Sisko model, magnetohydrodynamics, thermal radiation, non-linearly stretching sheet
Received: August 1, 2024; Revised: August 7, 2024; Accepted: September 2, 2024; Published: October 3, 2024
How to cite this article: Haris Alam Zuberi, Madan Lal and Nurul Amira Zainal, Computational hemorheology of blood flow with TiO2 nanoparticles over a nonlinearly stretching sheet under magnetohydrodynamics, JP Journal of Heat and Mass Transfer 37(5) (2024), 701-710. https://doi.org/10.17654/0973576324044
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] D. Suhag, P. Thakur and A. Thakur, Introduction to nanotechnology, Integrated Nanomaterials and their Applications, Springer, 2023, pp. 1-17. [2] V. Fuskele and R. M. Sarviya, Recent developments in nanoparticles synthesis, preparation and stability of nanofluids, Materials Today: Proceedings 4(2) (2017), 4049-4060. [3] T. Podgorski, Hemodynamics and hemorheology, Biological Flow in Large Vessels: Dialog Between Numerical Modeling and In Vitro/In Vivo Experiments, Wiley, 2022. [4] L. Shariati, Y. Esmaeili, I. Rahimmanesh, S. Babolmorad, G. Ziaei, A. Hasan, M. Boshtam and P. Makvandi, Nanobased platform advances in cardiovascular diseases: early diagnosis, imaging, treatment, and tissue engineering, Environmental Research (2023), 116933. [5] D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel and C. A. Mirkin, Gold nanoparticles for biology and medicine, Spherical Nucleic Acids, Jenny Stanford Publishing, 2020, pp. 55-90. [6] J. Tang, L. Xiong, G. Zhou, S. Wang, J. Wang, L. Liu, J. Li, F. Yuan, S. Lu, Z. Wan and L. Chou, Silver nanoparticles crossing through and distribution in the blood-brain barrier in vitro, Journal of Nanoscience and Nanotechnology 10(10) (2010), 6313-6317. [7] A. Zaman, N. Ali and N. Kousar, Nanoparticles (Cu, TiO2, Al2O3) analysis on unsteady blood flow through an artery with a combination of stenosis and aneurysm, Comput. Math. Appl. 76(9) (2018), 2179-2191. [8] M. R. Ghazanfari, M. Kashefi, S. F. Shams and M. R. Jaafari, Perspective of Fe3O4 nanoparticles role in biomedical applications, Biochemistry Research International 1 (2016), 7840161. [9] A. B. Jafar, S. Shafie and I. Ullah, MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium, Heliyon 6(6) (2020), e04201. [10] A. Riaz, E. Bobescu, K. Ramesh and R. Ellahi, Entropy analysis for cilia-generated motion of Cu-blood flow of nanofluid in an annulus, Symmetry 13(12) (2021), 2358. [11] H. S. Chahregh and S. Dinarvand, TiO2-Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system, International Journal of Numerical Methods for Heat and Fluid Flow 30(11) (2020), 4775-4796. [12] A. Zaman, N. Ali and M. Sajjad, Effects of nanoparticles (Cu, TiO2, Al2O3) on unsteady blood flow through a curved overlapping stenosed channel, Mathematics and Computers in Simulation 156 (2019), 279-293. [13] J. L. Ramaprasad, K. S. Balamurugan and G. Dharmaiah, Unsteady MHD convective heat and mass transfer flow past an inclined moving surface with heat absorption, JP Journal of Heat and Mass Transfer 13(1) (2016), 33. [14] A. K. Pati, A. Misra and S. K. Mishra, Effect of electrification of nanoparticles on heat and mass transfer in boundary layer flow of a copper water nanofluid over a stretching cylinder with viscous dissipation, JP Journal of Heat and Mass Transfer 17(1) (2019), 97-117. [15] M. A. Behnam, F. Emami, Z. Sobhani and A. R. Dehghanian, The application of titanium dioxide (TiO2) nanoparticles in the photo-thermal therapy of melanoma cancer model, Iranian Journal of Basic Medical Sciences 21(11) (2018), 1133.
|