Keywords and phrases: dual solutions, Eyring-Powell hybrid nanofluid, shrinking cylinder, viscous dissipation
Received: July 25, 2024; Revised: August 15, 2024; Accepted: August 27, 2024; Published: October 3, 2024
How to cite this article: Iskandar Waini, Umair Khan, Aurang Zaib, Anuar Ishak and Ioan Pop, Flow of Eyring-Powell hybrid nanofluid on a shrinking cylinder with Joule heating and viscous dissipation, JP Journal of Heat and Mass Transfer 37(5) (2024), 667-684. https://doi.org/10.17654/0973576324042
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] T. Hayat, Z. Hussain, M. Farooq and A. Alsaedi, Magnetohydrodynamic flow of Powell-Eyring fluid by a stretching cylinder with Newtonian heating, Thermal Science 22 (2018), 371-382. [2] R. E. Powell and H. Eyring, Mechanisms for the relaxation theory of viscosity, Nature 154 (1944), 427-428. [3] H. K. Yoon and A. J. Ghajar, A note on the Powell-Eyring fluid model, International Communications in Heat and Mass Transfer 14 (1987), 381-390. [4] A. Riaz, R. Ellahi, M. M. Bhatti and M. Marin, Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel, Heat Transfer Research 50 (2019), 1539-1560. [5] M. M. Bhatti, T. Abbas, M. M. Rashidi, M. Ali and Z. Yang, Entropy generation on MHD Eyring-Powell nanofluid through a permeable stretching surface, Entropy 18 (2016), 224. [6] A. Riaz, R. Ellahi and S. M. Sait, Role of hybrid nanoparticles in thermal performance of peristaltic flow of Eyring-Powell fluid model, Journal of Thermal Analysis and Calorimetry 143 (2021), 1021-1035. [7] A. V. Roşca and I. Pop, Flow and heat transfer of Powell-Eyring fluid over a shrinking surface in a parallel free stream, International Journal of Heat and Mass Transfer 71 (2014), 321-327. [8] M. Jalil, S. Asghar and S. M. Imran, Self similar solutions for the flow and heat transfer of Powell-Eyring fluid over a moving surface in a parallel free stream, International Journal of Heat and Mass Transfer 65 (2013), 73-79. [9] A. Ara, N. A. Khan, H. Khan and F. Sultan, Radiation effect on boundary layer flow of an Eyring-Powell fluid over an exponentially shrinking sheet, Ain Shams Engineering Journal 5 (2014), 1337-1342. [10] N. S. Akbar, A. Ebaid and Z. H. Khan, Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet, Journal of Magnetism and Magnetic Materials 382 (2015), 355-358. [11] E. O. Fatunmbi and A. T. Adeosun, Nonlinear radiative Eyring-Powell nanofluid flow along a vertical Riga plate with exponential varying viscosity and chemical reaction, International Communications in Heat and Mass Transfer 119 (2020), 104913. [12] T. M. Agbaje, S. Mondal, S. S. Motsa and P. Sibanda, A numerical study of unsteady non-Newtonian Powell-Eyring nanofluid flow over a shrinking sheet with heat generation and thermal radiation, Alexandria Engineering Journal 56 (2017), 81-91. [13] A. Aljabali, A. R. M. Kasim, N. S. Arifin, S. Mohamad Isa and N. A. N. Ariffin, Analysis of convective transport of temperature-dependent viscosity for non-Newtonian Eyring-Powell fluid: a numerical approach, Computers, Materials and Continua 66 (2021), 675-689. [14] I. Waini, A. Ishak and I. Pop, Eyring-Powell fluid flow past a shrinking sheet: Effect of magnetohydrodynamic (MHD) and Joule heating, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 116(1) (2024), 64-77. [15] C. Wang, Axisymmetric stagnation flow on a cylinder, Quarterly of Applied Mathematics 32 (1974), 207-213. [16] C. Y. Wang, Fluid flow due to a stretching cylinder, Phys. Fluids 31 (1988), 466. [17] A. Ishak, R. Nazar and I. Pop, Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder, Applied Mathematical Modelling 32 (2008), 2059-2066. [18] I. S. Awaludin, R. Ahmad and A. Ishak, On the stability of the flow over a shrinking cylinder with prescribed surface heat flux, Propulsion and Power Research 9(2) (2020), 181-187. [19] N. C. Roy and A. Akter, Dual solutions of mixed convective hybrid nanofluid flow over a shrinking cylinder placed in a porous medium, Heliyon 9(11) (2023), e22166. [20] S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, FED 231/MD, Vol. 66, 1995, pp. 99-105. [21] B. C. Pak and Young I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide, Experimental Heat Transfer 11 (1998), 151 170. [22] C. J. Ho, W. K. Liu, Y. S. Chang and C. C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study, International Journal of Thermal Sciences 49 (2010), 1345-1353. [23] B. Takabi and S. Salehi, Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid, Advances in Mechanical Engineering 6 (2014), 147059. [24] U. Khan, A. Zaib, A. Ishak, E.-S. M. Sherif, I. Waini, Y.-M. Chu and I. Pop, Radiative mixed convective flow induced by hybrid nanofluid over a porous vertical cylinder in a porous media with irregular heat sink/source, Case Studies in Thermal Engineering 30 (2022), 101711. [25] N. S. Khashi’ie, I. Waini, S. M. Zokri, A. R. M. Kasim, N. M. Arifin and I. Pop, Stagnation point flow of a second grade hybrid nanofluid induced by a Riga plate, International Journal of Numerical Methods for Heat and Fluid Flow 32 (2021), 2221-2239. [26] B. Mahanthesh, S. A. Shehzad, T. Ambreen and S. U. Khan, Significance of Joule heating and viscous heating on heat transport of MoS2-Ag hybrid nanofluid past an isothermal wedge, Journal of Thermal Analysis and Calorimetry 143 (2021), 1221-1229. [27] M. Ghalambaz, N. C. Rosca, A. V. Rosca and I. Pop, Mixed convection and stability analysis of stagnation-point boundary layer flow and heat transfer of hybrid nanofluids over a vertical plate, International Journal of Numerical Methods for Heat and Fluid Flow 30 (2020), 3737-3754. [28] I. Waini, A. Ishak and I. Pop, Hybrid nanofluid flow on a shrinking cylinder with prescribed surface heat flux, International Journal of Numerical Methods for Heat and Fluid Flow 31 (2021), 1987-2004. [29] I. Waini, A. Ishak and I. Pop, Hybrid nanofluid flow over a permeable non- isothermal shrinking surface, Mathematics 9 (2021), 538. [30] A. Mokhefi and E. R. di Schio, Effect of a magnetic field on the Couette forced convection of a Buongiorno’s nanofluid over an embedded cavity, JP Journal of Heat and Mass Transfer 30 (2022), 89-104. [31] A. K. Pati, A. Misra, S. K. Mishra, S. Mishra, R. Sahu and S. Panda, Computational modelling of heat and mass transfer optimization in copper water nanofluid flow with nanoparticle ionization, JP Journal of Heat and Mass Transfer 31 (2023), 1-18. [32] N. A. Rahman, N. S. Khashi’ie, K. B. Hamzah, N. A. Zainal, I. Waini and I. Pop, Axisymmetric hybrid nanofluid flow over a radially shrinking disk with heat generation and magnetic field effects, JP Journal of Heat and Mass Transfer 37(3) (2024), 365-375. [33] A. Wakif, A. Chamkha, T. Thumma, I. L. Animasaun and R. Sehaqui, Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina-copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model, Journal of Thermal Analysis and Calorimetry 143 (2021), 1201-1220 [34] H. Waqas, U. Farooq, R. Naseem, S. Hussain and M. Alghamdi, Impact of MHD radiative flow of hybrid nanofluid over a rotating disk, Case Studies in Thermal Engineering 26 (2021), 101015. [35] S. Rosseland, Astrophysik und atom-theoretische Grundlagen, Springer-Verlag, Berlin, 1931. [36] M. Rooman, M. A. Jan, Z. Shah, N. Vrinceanu, S. Ferrándiz Bou, S. Iqbal and W. Deebani, Entropy optimization on axisymmetric Darcy-Forchheimer Powell-Eyring nanofluid over a horizontally stretching cylinder with viscous dissipation effect, Coatings 12 (2022), 749. [37] H. A. Ogunseye, Y. O. Tijani and P. Sibanda, Entropy generation in an unsteady Eyring‐Powell hybrid nanofluid flow over a permeable surface: a Lie group analysis, Heat Transfer 49 (2020), 3374-3390. [38] I. Waini, A. Ishak and I. Pop, Hybrid nanofluid flow towards a stagnation point on a stretching/shrinking cylinder, Scientific Reports 10 (2020), 9296. [39] S. S. Ghadikolaei, K. Hosseinzadeh and D. D. Ganji, Investigation on magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nonlinear thermal radiation and Joule heating effect, World Journal of Engineering 16 (2019), 51-63. [40] I. Tlili, H. A. Nabwey, G. P. Ashwinkumar and N. Sandeep, 3-D magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effect, Scientific Reports 10 (2020), 1-13. [41] L. F. Shampine, I. Gladwell and S. Thompson, Solving ODEs with MATLAB, Cambridge University Press, Cambridge, 2003.
|