Keywords and phrases: variational iteration method, Schrödinger equation.
Received: December 7, 2023; Revised: June 28, 2024; Accepted: August 9, 2024
How to cite this article: Gérard ZONGO, Ousséni SO and Geneviève BARRO, Variational iteration method on linear and nonlinear Schrödinger’s equations, International Journal of Numerical Methods and Applications 24(2) (2024), 181-192. https://doi.org/10.17654/0975045224012
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1]B. Abbo, Nouvel algorithm numérique de résolution des équations différentielles ordinaires (EDO) et des équations aux dérivées partielles (EDP) non linéaires, Thèse de Doctorat unique, Université de Ouagadougou, 2007.
[2]B. Abbo, B. Some, O. So and G. Barro, A new numerical algorithm for solving nonlinear partial differential equations with initial and boundary conditions, Far East J. Appl. Math. 28(1) (2007), 37-52.
[3]M. Ablowitch and H. Segur, Solitions and the Inverse Scattering Transform, SIAM, 1981.
[4]G. Adomian, A review the decomposition method in applied mathematics, J. Math. Anal. Appl. 135 (1988), 501-544.
[5]G. Adomian, Solving Frontier Problems of Physics : The Decomposition Method, Kluwer Academic Pub., 1994.
[6]Amandine Aftalion, Jean Dalibard and Christophe Josserand, Équation de Schrödinger non linéaire : des condensats de bose einstein aux supersolides, 2010. http://aftalion.perso.math.cnrs.fr/Xcours/poly.pdf.
[7]H. Amann, W. Arendt, F. Neubrander, S. Nicaise and J. von Below, Functional Analysis and Evolution Equations, Birkhäuser, 2007.
[8]M. A. Fariborzi Araghi, S. Gholizadeh Dogahe and Z. Sayadi, The modified variational iteration method for solving linear and nonlinear ordinary differential equations, Australian Journal of Basic and Applied Sciences 5(10) (2011), 406-416.
[9]Snehashish Chakraverty, Nisha Rani Mahato, Perumandla Karunakar and Tharasi Dilleswar Rao, Advanced Numerical and Semi-analytical Methods for Differential Equations, John Wiley and Sons, 2019.
[10]P. G. Drazin and R. S. Johnson, Solitons: An Introduction, Cambridge University Press, 1993.
[11]Ji-Huan He, A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci. Numer. Simul. 2(4) (1997), 230-235.
[12]Ji-Huan He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Meth. Appl. Mech. Eng. 167 (1998), 57-68.
[13]Ji-Huan He, Variational iteration method a kind of nonlinear analytical technique : some examples, Internat. J. Non-Linear Mech. 34(4) (1999), 699-708.
[14]M. Inokuti, H. Sekine and T. Mura, General use of the Lagrange multiplier in non-linear mathematical physics, Variational Method in the Mechanics of Solid, S. Nemat Nasser, ed., Pergamon Press, Oxford, 1978, pp. 156-162.
[15]J. J. C. Nimmo and N. C. Freeman, A method of obtaining the N-soliton solutions of Boussinesq equation in terms of a Wronskian, Phys. Lett. A 95 (1983), 4-6.
[16]Abdul-Majid Wazwaz, A study on linear and nonlinear Schrödinger equations by the variational iteration method, Chaos Solitons Fractals 37 (2008), 1136-1142.
[17]A. M. Wazwaz, A reliable technique for solving linear and nonlinear Schrödinger equations by Adomian decomposition method, BIMAS 29(2) (2001), 125-134.
[18]Gérard Zongo, Modélisation multi-échelle, contribution à la résolution numérique de quelques équations aux dérivées partielles non linéaires par la méthode SBA, Ph. D. Thesis, Université Joseph Ki-Zerbo, 2019.
[19]Gérard Zongo, Ousséni So, Geneviève Barro, Youssouf Paré and Blaise Somé, A comparison of Adomian’s method and SBA method on the nonlinear Schrödinger’s equation, Far East J. Dyn. Syst. 29(4) (2017), 149-161.
|