Keywords and phrases: distance, metric dimension; resolving set, dominant resolving set, dominant metric dimension
Received: July 8, 2024; Revised: August 7, 2024; Accepted: August 14, 2024; Published: August 22, 2024
How to cite this article: Sultan Almotairi, Olayan Alharbi, Zaid Alzaid, Yasser M. Hausawi, Jaber Almutairi and Basma Mohamed, Computing the connected dominant metric dimension of different graphs, Advances and Applications in Discrete Mathematics 41(6) (2024), 505-520. https://doi.org/10.17654/0974165824034
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1]P. J. Slater, Leaves of trees, Congress. Numer. 14 (1975), 549-559.
[2]G. Chartrand, L. Eroh, M. A. Johnson and O. R. Ollermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), 99-113.
[3]Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal’ak and L. S. Ram, Network discovery and verification, IEEE Journal on Selected Areas in Communications 24(12) (2006), 2168-2181.
[4]R. Manjusha and A. S. Kuriakose, Metric dimension and uncertainty of traversing robots in a network, International Journal on Applications of Graph Theory in Wireless Ad Hoc Networks and Sensor Networks (GRAPH-HOC) 7 (2015), 1-9.
[5]B. Mohamed, Metric dimension of graphs and its application to robotic navigation, International Journal of Computer Applications 184(15) (2022), 1-3.
[6]R. A. Melter and I. Tomescu, Metric bases in digital geometry, Comput. Gr. Image Process 25 (1984), 113-121.
[7]A. Sebő and E. Tannier, On metric generators of graphs, Mathematics of Operations Research 29(2) (2004), 383-393.
[8]V. Chvátal, Mastermind, Combinatorica 3 (1983), 325-329.
[9]F. Harary and R. A. Melter, On the metric dimension of a graph, Combinatoria 2 (1976), 191-195.
[10]B. Mohamed, L. Mohaisen and M. Amin, Binary equilibrium optimization algorithm for computing connected domination metric dimension problem, Scientific Programming 2022 (2022), 1-15.
[11]S. Nazeer, M. Hussain, F. A. Alrawajeh and S. Almotairi, Metric dimension on path-related graphs, Mathematical Problems in Engineering 2021 (2021), 1-12.
[12]P. Singh, S. Sharma, S. K. Sharma and V. K. Bhat, Metric dimension and edge metric dimension of windmill graphs, AIMS Mathematics 6(9) (2021), 9138-9153.
[13]B. Mohamed, L. Mohaisen and M. Amin, Binary Archimedes optimization algorithm for computing dominant metric dimension problem, Intelligent Automation and Soft Computing 38(1) (2023), 19-34.
[14]H. M. A. Siddiqui and M. Imran, Computing the metric dimension of wheel related graphs, Applied Mathematics and Computation 242 (2014), 624-632.
[15]B. Deng, M. F. Nadeem and M. Azeem, On the edge metric dimension of different families of Möbius networks, Mathematical Problems in Engineering 2021 (2021), 1-9.
[16]B. Mohamed and M. Amin, The metric dimension of subdivisions of Lilly graph, Tadpole Graph and Special Trees, Applied and Computational Mathematics 12(1) (2023), 9-14.
[17]K. Wijaya, E. T. Baskoro, H. Assiyatun and D. Suprijanto, Subdivision of graphs in R (mK2, P4), Heliyon 6(6) (2020), 1-6.
[18]M. R. Garey, A Guide to the Theory of NP-Completeness, Computers and Intractability, 1979.
[19]J. L. Hurink and T. Nieberg, Approximating minimum independent dominating sets in wireless networks, Information Processing Letters 109(2) (2008), 155-160.
[20]A. H. Karbasi and R. E. Atani, Application of dominating sets in wireless sensor networks, International Journal of Security and Its Applications 7(4) (2013), 185-202.
[21]L. Susilowati, I. Sa’adah, R. Z. Fauziyyah and A. Erfanian, The dominant metric dimension of graphs, Heliyon 6(3) (2020), 1-6.
[22]R. P. Adirasari, H. Suprajitno and L. Susilowati, The dominant metric dimension of corona product graphs, Baghdad Science Journal 18(2) (2021), 0349-0349.
[23]B. Mohamed and M. Amin, Domination number and secure resolving sets in cyclic networks, Applied and Computational Mathematics 12(2) (2023), 42-45.
[24]A. M. Naji and N. D. Soner, Resolving connected domination in graphs, Mathematical Combinatorics 4 (2015), 129-136.
[25]P. Z. Akbari, V. J. Kaneria and N. A. Parmar, Absolute mean graceful labeling of jewel graph and jelly fish graph, International Journal of Mathematics Trends and Technology-IJMTT 68 (2022), 86-93.
[26]S. S. Khunti, M. A. Chaurasiya and M. P. Rupani, Maximum eccentricity energy of globe graph, bistar graph and some graph related to bistar graph, Malaya Journal of Matematik 8(4) (2020), 1521-1526.
[27]S. Kavitha and P. Sumathi, Quotient-4 cordial labeling of some unicyclic graphs and some corona of ladder graphs, Journal of Survey in Fisheries Sciences 10(2) (2023), 1815-1831.
[28]J. J. Jesintha, N. K. Vinodhini and S. D. Lakshmi, Antimagic labeling of Triangular book graph and double fan graph, Bull. Pure Appl. Sci., Sect. E Math. Stat. E 42 (2023), 27-30.
[29]S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathematics 70(3) (1996), 217-229.
[30]A. H. Karbasi and R. E. Atani, Application of dominating sets in wireless sensor networks, Int. J. Secur. its Appl. 7 (2013), 185-202.
[31]S. Lal and V. K. Bhat, On the dominant local metric dimension of some planar graphs, Discrete Mathematics, Algorithms and Applications 15(7) (2023), 1-20.
[32]S. K. Sharma, V. K. Bhat and S. Lal, Edge resolving number of pentagonal circular ladder, Annals of the University of Craiova-Mathematics and Computer Science Series, 50(1) (2023), 152-170.
[33]C. Zhang, G. Haidar, M. U. I. Khan, F. Yousafzai, K. Hila and A. U. I. Khan, Constant time calculation of the metric dimension of the join of path graphs, Symmetry 15(3) (2023), 1-14.
[34]D. Fitriani, A. Rarasati, S. W. Saputro and E. T. Baskoro, The local metric dimension of split and unicyclic graphs, Indonesian Journal of Combinatorics 6(1) (2022), 50-57.
[35]S. Almotairi, O. Alharbi, Z. Alzaid, Y. M. Hausawi, J. Almutairi and B. Mohamed, Secure dominant metric dimension of new classes of graphs, Kongzhi yu Juece/Control and Decision 39(5) (2024), 2705-2714.
[36]H. Alshehri, A. Ahmad, Y. Alqahtani and M. Azeem, Vertex metric-based dimension of generalized perimantanes diamondoid structure, IEEE Access 10 (2022), 43320-43326.
[37]S. Almotairi, O. Alharbi, Z. Alzaid, M. Y. Hausawi, J. Almutairi and B. Mohamed, Finding the domination number of triangular belt networks, Mathematical Models in Engineering, 2024.
[38]M. I. Batiha, M. Amin, B. Mohamed and H. I. Jebril, Connected metric dimension of the class of ladder graphs, Mathematical Models in Engineering, 2024.
[39]M. F. Nadeem, S. Qu, A. Ahmad and M. Azeem, Metric dimension of some generalized families of Toeplitz graphs, Mathematical Problems in Engineering 2022(1) (2022), 1-10.
[40]M. Azeem, M. Imran and M. F. Nadeem, Sharp bounds on partition dimension of hexagonal Möbius ladder, Journal of King Saud University-Science 34(2) (2022), 1-7.
[41]A. N. Koam, A. Ahmad, M. S. Alatawi, M. F. Nadeem and M. Azeem, Computation of metric-based resolvability of quartz without pendant nodes, IEEE Access 9 (2021), 151834-151840.
[42]M. Imran, A. Ahmad, M. Azeem and K. Elahi, Metric-based resolvability of quartz structure, Computers, Materials and Continua 71(1) (2021), 2053-2071.
|