Keywords and phrases: numerical modelling, polymer pipe, laminar transient flow, temperature, polynomial expansion, method of characteristics
Received: June 15, 2024; Revised: July 18, 2024; Accepted: July 30, 2024; Published: August 5, 2024
How to cite this article: Tarek Bahrar, Hassan Samri and My Elhoussine Ech-Chhibat, Numerical modelling of transient laminar flow in a polymer pipe, JP Journal of Heat and Mass Transfer 37(4) (2024), 471-489. https://doi.org/10.17654/0973576324033
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] E. B. Wylie and V. L. Streeter, Fluid Transients, New York, 1978. [2] M. H. Chaudhry, Applied Hydraulic, Transients, 3rd ed., New York, Springer, 2014. [3] A. Bergant, A. R. Simpson and A. S. Tijsseling, Water hammer with column separation: a historical review, J. Fluids Struct. 22 (2006), 135-171. [4] D. C. Wiggert and A. S. Tijsseling, Fluid transients and fluid structure interaction in flexible liquid filled piping, ASME Appl. Mech. Rev. 54(5) (2021), 455-481. [5] B. Brunone, B. W. Karney, M. Mecarelli and M. Ferrante, Velocity profiles and unsteady pipe friction in transient flow, Journal of Water Resources Planning and Management 126(4) (2000), 236-244. [6] A. E. Larreteguy, A transient shear stress model for the analysis of laminar water- hammer problems, Journal of Hydraulic Research 40(1) (2002), 45-53. [7] E. M. Wahba, On the two-dimensional characteristics of laminar fluid transients in viscoelastic pipes, J. Fluids Struct. 68 (2017), 113-124. [8] G. Pezzinga, Evaluation of unsteady flow resistances by quasi-2D or 1D models, J. Hydraul. Eng. 126(10) (2000), 778-785. [9] W. Zielke, Frequency-dependent friction in transient pipe flow, Transaction of the ASME, Journal of Basic Engineering 90(1) (1968), 109-115. [10] G. Tison, Le mouvement non permanent succedant à l’ouverture d’une vanne sur une conduite en polyéthylene, BECETEL, Communication N°3, Univeristé de Grang, 1958. [11] E. Rieutord and A. Blanchard, Écoulement non permanent en conduite viscoélastique - coup de bélier, Journal of Hydraulic Research 17(3) (1979), 217-229. [12] M. S. Güney, Waterhammer in viscoelastic pipes where cross-section parameters are time-dependent, Proceedings of the 4th International Conference on Pressure Urges, Bath, UK, 1983, pp. 189-204. [13] A. Keramat, A. S. Tijsseling, Q. Hou and A. Ahmadi, Fluid-structure interaction with pipe-wall viscoelasticity during water hammer, Journal of Fluids and Structures 28 (2012), 434-455. [14] M. Kubrak, A. Malesinska, A. Kodura, K. Urbanowicz and M. Stosiak, Hydraulic transients in viscoelastic pipeline system with sudden cross-section changes, Energies 14 (2021), 4071. [15] A. K. Trikha, An efficient method for simulating frequency-dependent friction in transient liquid flow, Journal of Fluids Engineering, Trans. ASME 97 (1975), 97-105. [16] A. K. Soares et al., Analysis of PVC pipe-wall viscoelasticity during water hammer, ASCE Journal of Hydraulic Engineering 134(9) (2008), 1389-1394. [17] J. Mandel, Cours de mécanique des milieux continus, Gauthier-Villars, Paris, Vol. 2, Annexe XXI, 1966. [18] B. D. Coleman and W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys. 33 (1961), 239-249. [19] H. A. A. Abdel-Gawad and B. Djebdjian, Modelling water hammer in viscoelastic pipes using the wave characteristic method, Appl. Math. Model. 83 (2020), 322-341. [20] E. L. Holmboe and W. T. Rouleau, The effect of viscous shear on transients in liquid lines, Journal of Basic Engineering 89(1) (1967), 174-180.
|