Keywords and phrases: fluid slip, heat transfer, thin film, microchannel, capillary force, disjoining pressure.
Received: April 19, 2024; Accepted: May 11, 2024; Published: August 5, 2024
How to cite this article: Rama Subba Reddy GORLA, John BREWER and Abdeel ROMAN, Effects of fluid slip on heat transfer in the thin film region in a microchannel, JP Journal of Heat and Mass Transfer 37(4) (2024), 417-432. https://doi.org/10.17654/0973576324029
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] B. V. Derjaguin, S. V. Nerpin and N. V. Churayev, Effect of film heat transfer upon evaporation of liquids from capillaries, Bull. R.I.L.E.M. 29 (1965), 93-98. [2] M. Potash and P. C. Wayner, Evaporation from a two-dimensional extended meniscus, International Journal of Heat and Mass Transfer 15 (1972), 1851-1863. [3] A. Faghri, Heat Pipe Science and Technology, Taylor and Francis, Washington DC, 1995. [4] H. B. Ma and G. P. Peterson, Temperature variation and heat transfer in triangular grooves with an evaporating film, Journal of Thermophysics and Heat Transfer 11 (1997), 90-97. [5] P. C. Stephan and C. A. Busse, Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls, International Journal of Heat and Mass Transfer 35 (1992), 383-391. [6] J. A. Schonberg, S. Das Gupta and P. C. Wayner, An augmented Young-Laplace model of an evaporation meniscus in a microchannel with high heat flux, Experimental Thermal and Fluid Science 10 (1995), 163-170. [7] A. Mirzamoghadam and I. Catton, A physical model of the evaporating meniscus, Journal of Heat Transfer 110 (1988), 201-207. [8] X. Xu and V. P. Carey, Film evaporation from a microgrooved surface – an approximate heat transfer model and its comparison with experimental data, Journal of Thermophysics and Heat Transfer 4 (1990), 512-520. [9] S. M. Demsky and H. B. Ma, Thin film evaporation on curved surface, Journal of Microscale Thermophysical Engineering 8 (2004), 285-299. [10] A. J. Jiao, R. Riegler, H. B. Ma and G. P. Peterson, Thin film evaporation effect on heat transfer, Journal of Heat Transfer 125 (2005), 644-652. [11] E. Sultan, A. Boudaoud and M. Ben Amar, Evaporation of a thin film: diffusion of the vapour and marangoni instabilities, Journal of Fluid Mechanics 543 (2005), 183-202. [12] K. Park, K. S. Lee and K. J. Noh, Transport phenomena in the thin-film region of a micro-channel, International Journal of Heat and Mass Transfer 46 (2003), 2381-2388. [13] C. Chakraborty and S. K. Som, Heat transfer in an evaporating thin liquid film moving slowly along the walls of an inclined microchannel, International Journal of Heat and Mass Transfer 48 (2005), 2801-2805. [14] H. Wang, S. V. Garimella and J. Y. Murthy, Characteristics of an evaporating thin film in a microchannel, International Journal of Heat Mass Transfer 50 (2007), 3933-3942. [15] D. Wu and G. P. Peterson, Investigation of the transient characteristics of a micro heat pipe, Journal of Thermophysics 5 (1991), 129-136. [16] B. Fu, N. Zhao, B. Tian, W. Corey and H. Ma, Evaporation heat transfer in thin film region with bulk vapor flow effect, ASME Journal of Heat and Mass Transfer 140 (2018), 100-108. [17] R. S. R. Gorla, L. Byrd and D. Pratt, Second law analysis for microscale flow and heat transfer, Applied Thermal Engineering Journal 27 (2007), 1414-1423. [18] E. Ruckenstein and P. Rajora, On the no-slip boundary condition of hydrodynamics, Journal of Colloid and Interface Science 96 (1983), 488-491. [19] J. Tyrell and P. Attard, Images of nanobubbles on hydrophobic surfaces and their interactions, Phys. Rev. Letters 87 (2001), 176-180. [20] K. Lum, D. Chandler and J. Weeks, Hydrofobicity at small and large length scales, J. Phys. Chem. B 103 (1999), 4570-4577. [21] R. Steitz, T. Gutberlet, T. Hauss, B. Klosgen, R. Kraster, S. Schemmel, A. Simonsen and G. Findenegg, Nanobubbles and their precursor layer at the interface of water against hydrophobic substrate, Langmuir 19 (2003), 2409-2418. [22] D. C. Tretheway and C. D. Meinhart, A generating mechanism for apparent fluid slip in hydrophobic microchannels, Physics of Fluids 16 (2004), 5-10. [23] R. Pit, H. Hervet and L. Liliane, Direct experimental evidence of slip in hexadecane: solid interfaces, Physical Review Letters 85 (2000), 980-983. [24] Y. Zhu and S. Granick, Limits of the hydrodynamic no-slip boundary condition, Physics Review Letters 88 (2002), 10-16. [25] C. H. Choi, K. Johan, A. Westin and K. S. Breuer, Apparent slip flows in hydrophilic and hydrophobic microchannels, Physics of Fluids 15 (2003), 2897-2902.
|