Keywords and phrases: fractional heat conduction, moving heat source, thermal deflection, thermal stresses
Received: March 28, 2024; Revised: June 19, 2024; Accepted: July 1, 2024; Published: July 6, 2024
How to cite this article: V. R. Manthena, V. B. Srinivas, N. K. Lamba and G. D. Kedar, Fractional thermal response in a thermosensitive rectangular plate due to the action of a moving source of heat, Advances in Differential Equations and Control Processes 31(3) (2024), 397-415. https://doi.org/10.17654/0974324324022
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophysical Journal International 13(5) (1967), 529-539. [2] M. Caputo, Elasticita e dissipazione, Zanichelli, 1969. [3] M. Caputo and F. Mainardi, Linear models of dissipation in an elastic solid, La Rivista del Nuovo Cimento 1(2) (1971), 161-198. [4] N. Noda, Thermal stresses in materials with temperature dependent properties, Thermal Stresses I, North Holland, Amsterdam, 1986, pp. 391-483. [5] Y. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta. Math. Vietnam. 24(2) (1999), 207-233. [6] F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes, J. Comput. Appl. Math. 118(2) (2000), 283-299. [7] Y. Z. Povstenko, Fractional heat conduction equation and associated thermal stresses, Journal of Thermal Stresses 28(1) (2005), 83-102. [8] Y. Z. Povstenko, Fundamental solutions to central symmetric problems for fractional heat conduction equation and associated thermal stresses, Journal of Thermal Stresses 31(2) (2008), 127-148. [9] V. E. Tarasov, On chain rule for fractional derivatives, Commun. Nonlinear Sci. Numer. Simul. 30(1-3) (2016), 1-4. [10] V. R. Manthena, N. K. Lamba, G. D. Kedar and K. C. Deshmukh, Effects of stress resultants on thermal stresses in a functionally graded rectangular plate due to temperature dependent material properties, International Journal of Thermodynamics 19(4) (2016), 235-242. [11] E. Bassiouny and H. M. Youssef, Sandwich structure panel subjected to thermal loading using fractional order equation of motion and moving heat source, Canadian Journal of Physics 96(2) (2018), 174-182. [12] V. R. Manthena, G. D. Kedar and K. C. Deshmukh, Thermal stress analysis of a thermosensitive functionally graded rectangular plate due to thermally induced resultant moments, Multidiscipline Modeling in Materials and Structures 14(5) (2018), 857-873. [13] V. R. Manthena and G. D. Kedar, On thermoelastic problem of a thermosensitive functionally graded rectangular plate with instantaneous point heat source, Journal of Thermal Stresses 42(7) (2019), 849-862. [14] E. M. Hussein, Effect of fractional parameter on thermoelastic half-space subjected to a moving heat source, International Journal of Heat and Mass Transfer 141 (2019), 855-860. [15] J. Yi, T. Jin and Z. Deng, The temperature field study on the three-dimensional surface moving heat source model in volute gear form grinding, The International Journal of Advanced Manufacturing Technology 103(5-8) (2019), 3097-3108. [16] A. Sur, S. Mondal and M. Kanoria, Influence of moving heat source on skin tissue in the context of two temperature memory dependent heat transport law, Journal of Thermal Stresses 43(1) (2020), 55-71. [17] N. Kumar and D. B. Kamdi, Thermal behaviour of a finite hollow cylinder in context of fractional thermoelasticity with convection boundary conditions, Journal of Thermal Stresses 43(9) (2020), 1189-1204. [18] G. Geetanjali and P. K. Sharma, Impact of fractional strain on medium containing spherical cavity in the framework of generalized thermoviscoelastic diffusion, Journal of Thermal Stresses 46(5) (2023), 333-350. [19] V. Chaurasiya and J. Singh, Numerical investigation of a non-linear moving boundary problem describing solidification of a phase change material with temperature dependent thermal conductivity and convection, Journal of Thermal Stresses 46(8) (2023), 799-822. [20] R. V. Singh and S. Mukhopadhyay, Mathematical significance of strain rate and temperature rate on heat conduction in thermoelastic material due to line heat source, Journal of Thermal Stresses 46(11) (2023), 1164-1179. [21] Y. Rahimi, M. Ghadiri, A. Rajabpour and M. F. Ahari, Temperature-dependent vibrational behavior of bilayer doubly curved micro-nano liposome shell: simulation of drug delivery mechanism, Journal of Thermal Stresses 46(11) (2023), 1199-1226. [22] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974. [23] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993. [24] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. [25] N. Noda, R. B. Hetnarski and Y. Tanigawa, Thermal Stresses, 2nd ed., Taylor and Francis, New York, 2003. [26] L. M. Jiji, Heat Conduction, 3rd ed., Springer, Berlin Heidelberg, 2009. [27] Y. Povstenko, Fractional Thermoelasticity, Springer, New York, Vol. 219, 2015.
|