Keywords and phrases: sentiment analysis, natural language processing, deep learning, patient experience, machine learning, support vector machine
Received: May 7, 2024; Accepted: May 16, 2024; Published: June 3, 2024
How to cite this article: Razan S. Alanazi and Hanan Ali Alshaher, Sentiment analysis of patient experience, JP Journal of Biostatistics 24(2) (2024), 335-370. https://doi.org/10.17654/0973514324020
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] S. Binkheder, R. N. Aldekhyyel, A. AlMogbel, N. Al-Twairesh, N. Alhumaid, S. N. Aldekhyyel and A. A. Jamal, Public perceptions around Mhealth applications during Covid-19 pandemic: a network and sentiment analysis of tweets in Saudi Arabia, International Journal of Environmental Research and Public Health 18(24) (2021), 13388. [2] A. Al-Hashedi, B. Al-Fuhaidi, A. M. Mohsen, Y. Ali, H. A. Gamal Al-Kaf, W. Al-Sorori and N. Maqtary, Ensemble classifiers for Arabic sentiment analysis of social network (Twitter data) towards COVID-19-related conspiracy theories, Applied Computational Intelligence and Soft Computing 2022 (2022), 1-10. [3] B. AlBadani, R. Shi and J. Dong, A novel machine learning approach for sentiment analysis on Twitter incorporating the universal language model fine-tuning and SVM, Applied System Innovation 5(1) (2022), 13. [4] J. E. Tang, V. Arvind, C. Dominy, C. A. White, S. K. Cho and J. S. Kim, How are patients reviewing spine surgeons online? A sentiment analysis of physician review website written comments, Global Spine Journal 13 (2023), 2107-2114. https://doi.org/10.1177/21925682211069933. [5] M. Stemmer, Y. Parmet and G. Ravid, What are IBD patients talking about on twitter? Using natural language understanding to investigate patients’ tweets, SN Computer Science 4(4) (2023), 343. [6] A. R. Pandey, M. Seify, U. Okonta and A. Hosseinian-Far, Advanced sentiment analysis for managing and improving patient experience: application for general practitioner (GP) classification in Northamptonshire, International Journal of Environmental Research and Public Health 20(12) (2023), 6119. [7] S. Chekijian, H. Li and S. Fodeh, Emergency care and the patient experience: using sentiment analysis and topic modeling to understand the impact of the COVID-19 pandemic, Health and Technology 11(5) (2021), 1073-1082. [8] M. Khanbhai, L. Warren, J. Symons, K. Flott, S. Harrison-White, D. Manton and E. Mayer, Using natural language processing to understand, facilitate and maintain continuity in patient experience across transitions of care, International Journal of Medical Informatics 157 (2022), 104642. [9] J. Liu, J. Kong and X. Zhang, Study on differences between patients with physiological and psychological diseases in online health communities: topic analysis and sentiment analysis, International Journal of Environmental Research and Public Health 17(5) (2020), 1508. [10] X. Liu, S. Zhou and X. Chi, How do team-level and individual-level linguistic styles affect patients’ emotional well-being - evidence from online doctor teams, International Journal of Environmental Research and Public Health 20(3) (2023), 1915. [11] K. C. Wood, J. J. Bertram, T. D. Kendig and M. Pergolotti, Understanding patient experience with outpatient cancer rehabilitation care, Healthcare 11(3) (2023), 348. [12] F. Greaves, D. Ramirez-Cano, C. Millett, A. Darzi and L. Donaldson, Use of sentiment analysis for capturing patient experience from free-text comments posted online, Journal of Medical Internet Research 15(11) (2013), e2721. [13] C. Li, J. Fu, J. Lai, L. Sun, C. Zhou, W. Li and Y. Wu, Construction of an emotional lexicon of patients with breast cancer: development and sentiment analysis, Journal of Medical Internet Research 25 (2023), e44897. [14] A. I. A. Rahim, M. I. Ibrahim, S. L. Chua and K. I. Musa, Hospital Facebook reviews analysis using a machine learning sentiment analyzer and quality classifier, Healthcare 9(12) (2021), 1679. [15] S. Robinson and E. Vicha, Twitter sentiment at the hospital and patient level as a measure of pediatric patient experience, Open Journal of Pediatrics 11(4) (2021), 706-722. [16] J. Meyer and S. Okuboyejo, User reviews of depression app features: sentiment analysis, JMIR Formative Research 5(12) (2021), e17062. [17] P. Bovonratwet, T. S. Shen, W. Islam, M. P. Ast, S. B. Haas and E. P. Su, Natural language processing of patient-experience comments after primary total knee arthroplasty, The Journal of Arthroplasty 36(3) (2021), 927-934. [18] D. C. Elbers, J. La, J. R. Minot, R. Gramling, M. T. Brophy, N. V. Do, N. R. Fillmore, P. S. Dodds and C. M. Danforth, Sentiment analysis of medical record notes for lung cancer patients at the department of veterans affairs, PLoS One 18(1) (2023), e0280931. [19] J. N. Cuenca-Zaldívar, M. Torrente-Regidor, L. Martín-Losada, C. Fernández-De- Las-Peñas, L. L. Florencio, P. A. Sousa and D. Palacios-Ceña, Exploring sentiment and care management of hospitalized patients during the first wave of the COVID-19 pandemic using electronic nursing health records: descriptive study, JMIR Medical Informatics 10(5) (2022), e38308. [20] N. Vandenbussche, C. Van Hee, V. Hoste and K. Paemeleire, Using natural language processing to automatically classify written self-reported narratives by patients with migraine or cluster headache, The Journal of Headache and Pain 23(1) (2022), 1-12. [21] J. Serrano-Guerrero, M. Bani-Doumi, F. P. Romero and J. A. Olivas, Understanding what patients think about hospitals: a deep learning approach for detecting emotions in patient opinions, Artificial Intelligence in Medicine 128 (2022), 102298. [22] M. Khanbhai, J. Symons, K. Flott, S. Harrison-White, J. Spofforth, R. Klaber and E. Mayer, Enriching the value of patient experience feedback: web-based dashboard development using co-design and heuristic evaluation, JMIR Human Factors 9(1) (2022), e27887. [23] A. Bittar, S. Velupillai, A. Roberts and R. Dutta, Using general-purpose sentiment lexicons for suicide risk assessment in electronic health records: corpus-based analysis, JMIR Medical Informatics 9(4) (2021), e22397. [24] D. Spinczyk, M. Bas, M. Dzieciątko, M. Maćkowski, K. Rojewska and S. Maćkowska, Computer-aided therapeutic diagnosis for anorexia, BioMedical Engineering OnLine 19 (2020), 1-23. [25] R. Huang, N. Liu, M. A. Nicdao, M. Mikaheal, T. Baldacchino, A. Albeos, K. Petoumenos, K. Sud and J. Kim, Emotion sharing in remote patient monitoring of patients with chronic kidney disease, Journal of the American Medical Informatics Association 27(2) (2020), 185-193. [26] D. Marinello, I. Palla, V. Lorenzoni, G. Andreozzi, S. Pirri, S. Ticciati, S. Cannizzo, A. Del Bianco, E. Ferretti, S. Santoni, G. Turchetti, M. Mosca and R. Talarico, Exploring disease perception in Behçet’s syndrome: combining a quantitative and a qualitative study based on a narrative medicine approach, Orphanet Journal of Rare Diseases 18(1) (2023), 1-15. [27] S. AlMuhaideb, Y. AlNegheimish, T. AlOmar, R. AlSabti, M. AlKathery and G. AlOlyyan, Analyzing Arabic Twitter-based patient experience sentiments using multi-dialect Arabic bidirectional encoder representations from transformers, Computers, Materials and Continua 76(1) (2023), 195-220. [28] E. Y. Mohamed, W. Sami, A. Alotaibi, A. Alfarag, A. Almutairi and F. Alanzi, Patients’ satisfaction with primary health care centers’ services, Majmaah, Kingdom of Saudi of Saudi Arabia, International Journal of Health Sciences 9(2) (2015), 163-170.
|