Keywords and phrases: ordinary differential equation, homotopy perturbation method, initial value problem, series solution
Received: December 8, 2023; Accepted: March 2, 2024; Published: June 11, 2024
How to cite this article: Nada A. M. Alshomrani, Weam G. Alharbi, Ibtisam M. A. Alanazi, Lujain S. M. Alyasi, Ghadi N. M. Alrefaei, Seada A. Al’amri and Asmaa H. Q. Alanzi, Homotopy perturbation method for solving a nonlinear system for an epidemic, Advances in Differential Equations and Control Processes 31(3) (2024), 347-355. https://doi.org/10.17654/0974324324019
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] J. Li and X. Zou, Modeling spatial spread of infectious diseases with a spatially continuous domain, Bull. Math. Biol. 71(8) (2009), 20-48. [2] C. I. Siettos and L. Russo, Mathematical modeling of infectious disease dynamics, Virulence 4 (2013), 295-306. [3] S. M. Jenness, S. M. Goodreau and M. Morris, Epimodel: an R package for mathematical modeling of infectious disease over networks, Journal of Statistical Software 84 (2018), 1-56. [4] A. S. Shaikh, I. N. Shaikh and K. S. Nisar, A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control, Adv. Difference Equ. 373 (2020), 1-19. [5] J. G. De Abajo, Simple mathematics on COVID-19 expansion, MedRxiv, 2020. [6] K. A. Gepreel, M. S. Mohamed, H. Alotaibi and A. M. S. Mahdy, Dynamical behaviors of nonlinear coronavirus (COVID-19) model with numerical studies, Computers, Materials and Continua 67(1) (2021), 675-686. DOI: 10.32604/cmc.2021.012200. [7] K. Ghosh and A. K. Ghosh, Study of COVID-19 epidemiological evolution in India with a multiwave SIR model, Nonlinear Dynam. 312(109) (2022), 47-55. https://doi.org/10.1007/s11071-022-07471-x. [8] W. Alharbi, A. Shater, A. Ebaid, C. Cattani and M. Areshi, Communicable disease model in view of fractional calculus, AIMS Math. 8 (2023), 10033-10048. [9] A. Ebaid, Approximate analytical solution of a nonlinear boundary value problem and its application in fluid mechanics, Z. Naturforschung A 66 (2011), 423-426. [10] A. Ebaid, A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method, J. Comput. Appl. Math. 235 (2011), 1914-1924. [11] E. H. Ali, A. Ebaid and R. Rach, Advances in the Adomian decomposition method for solving two-point nonlinear boundary value problems with Neumann boundary conditions, Comput. Math. Appl. 63 (2012), 1056-1065. [12] A. Ebaid, C. Cattani, A. S. Al Juhani1 and E. R. El-Zahar, A novel exact solution for the fractional Ambartsumian equation, Adv. Difference Equ. (2021), 2021:88. https://doi.org/10.1186/s13662-021-03235-w. [13] A. Ebaid, M. D. Aljoufi and A.-M. Wazwaz, An advanced study on the solution of nanofluid flow problems via Adomian’s method, Appl. Math. Lett. 46 (2015), 117-122. [14] K. Abbaoui and Y. Cherruault, Convergence of Adomian’s method applied to nonlinear equations, Math. Comput. Model. 20 (1994), 69-73. [15] A. Alshaery and A. Ebaid, Accurate analytical periodic solution of the elliptical Kepler equation using the Adomian decomposition method, Acta Astronautica 140 (2017), 27-33. [16] H. O. Bakodah and A. Ebaid, Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji and Jafari approximate method, Mathematics 6 (2018), 331. [17] A. Ebaid, A. Al-Enazi, B. Z. Albalawi and M. D. Aljoufi, Accurate approximate solution of ambartsumian delay differential equation via decomposition method, Math. Comput. Appl. 24(1) (2019), 7. [18] A. H. S. Alenazy, A. Ebaid, E. A. Algehyne and H. K. Al-Jeaid, Advanced study on the delay differential equation Mathematics 10(22) (2022), 4302. https://doi.org/10.3390/math10224302. [19] A. Ebaid, Remarks on the homotopy perturbation method for the peristaltic flow of Jeffrey fluid with nano-particles in an asymmetric channel, Comput. Math. Appl. 68(3) (2014), 77-85. [20] A. Ebaid, A. F. Aljohani and E. H. Aly, Homotopy perturbation method for peristaltic motion of gold-blood nanofluid with heat source, Internat. J. Numer. Methods Heat Fluid Flow 30(6) (2020), 3121-3138. https://doi.org/10.1108/HFF-11-2018-0655. [21] Ebrahem A. Algehyne, Essam R. El-Zahar, Fahad M. Alharbi and Abdelhalim Ebaid, Development of analytical solution for a generalized Ambartsumian equation, AIMS Math. 5(1) (2020), 249-258. Doi: 10.3934/math.2020016. [22] A. B. Albidah, N. E. Kanaan, A. Ebaid and H. K. Al-Jeaid, Exact and numerical analysis of the pantograph delay differential equation via the homotopy perturbation method, Mathematics 11 (2023), 944. https://doi.org/10.3390/math11040944.
|