Keywords and phrases: malware detection, android, optimization, extraction and selection of feature, deep learning
Received: April 11, 2024; Accepted: May 16, 2024; Published: June 7, 2024
How to cite this article: Sultan Almotairi, Mohd Abdul Rahim Khan, Olayan Alharbi, Zaid Alzaid, Yasser M. Hausawi and Jaber Almutairi, Detection of Android malware using deep learning ensemble with cheetah-optimized feature selection, Advances and Applications in Discrete Mathematics 41(5) (2024), 357-392. https://doi.org/10.17654/0974165824026
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun and H. Liu, A review of android malware detection approaches based on machine learning, IEEE Access 8 (2020), 124579-124607. [2] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal and Y. Xiang, A survey of android malware detection with deep neural models, ACM Computing Surveys (CSUR) 53(6) (2020), 1-36. [3] H. Gao, S. Cheng and W. Zhang, GDroid: Android malware detection and classification with graph convolutional network, Computers and Security 106 (2021), 102264. [4] Y. Pan, X. Ge, C. Fang and Y. Fan, A systematic literature review of android malware detection using static analysis, IEEE Access 8 (2020), 116363-116379. [5] M. K. Alzaylaee, S. Y. Yerima and S. Sezer, DL-Droid: deep learning based android malware detection using real devices, Computers and Security 89 (2020), 101663. [6] V. Kouliaridis and G. Kambourakis, A comprehensive survey on machine learning techniques for android malware detection, Information 12(5) (2021), 185. [7] D. Zou, Y. Wu, S. Yang, A. Chauhan, W. Yang, J. Zhong, S. Dou and H. Jin, IntDroid: Android malware detection based on API intimacy analysis, ACM Transactions on Software Engineering and Methodology (TOSEM) 30(3) (2021), 1-32. [8] O. N. Elayan and A. M. Mustafa, Android malware detection using deep learning, Procedia Computer Science 184 (2021), 847-852. [9] A. Muzaffar, H. R. Hassen, M. A. Lones and H. Zantout, An in-depth review of machine learning based Android malware detection, Computers and Security 121 (2022), 102833. [10] J. Kim, Y. Ban, E. Ko, H. Cho and J. H. Yi, MAPAS: a practical deep learning-based android malware detection system, International Journal of Information Security 21(4) (2022), 725-738. [11] S. K. Smmarwar, G. P. Gupta, S. Kumar and P. Kumar, An optimized and efficient android malware detection framework for future sustainable computing, Sustainable Energy Technologies and Assessments 54 (2022), 102852. [12] L. Meijin, F. Zhiyang, W. Junfeng, C. Luyu, Z. Qi, Y. Tao, W. Yinwei and G. Jiaxuan, A systematic overview of android malware detection, Applied Artificial Intelligence 36(1) (2022), 2007327. [13] A. Mahindru and A. L. Sangal, SOMDROID: Android malware detection by artificial neural network trained using unsupervised learning, Evolutionary Intelligence 15(1) (2022), 407-437. [14] A. S. Shatnawi, Q. Yassen and A. Yateem, An android malware detection approach based on static feature analysis using machine learning algorithms, Procedia Computer Science 201 (2022), 653-658. [15] M. M. Alani and A. I. Awad, Paired: an explainable lightweight android malware detection system, IEEE Access 10 (2022), 73214-73228. [16] R. Yumlembam, B. Issac, S. M. Jacob and L. Yang, IoT-based android malware detection using graph neural network with adversarial defense, IEEE Internet of Things Journal 10 (2023), 8432-8444. [17] S. R. Mat, M. F. Ab Razak, M. N. Kahar, J. M. Arif and A. Firdaus, A Bayesian probability model for Android malware detection, ICT Express 8(3) (2022), 424-431. [18] H. Alamro, W. Mtouaa, S. Aljameel, A. S. Salama, M. A. Hamza and A. Y. Othman, Automated android malware detection using optimal ensemble learning approach for cybersecurity, IEEE Access 11 (2023), 72509-72517. [19] F. Taher, O. AlFandi, M. Al-Kfairy, H. Al Hamadi and S. Alrabaee, DroidDetectMW: a hybrid intelligent model for android malware detection, Appl. Sci. 13(13) (2023), 7720. [20] N. Xie, Z. Qin and X. Di, GA-StackingMD: Android malware detection method based on genetic algorithm optimized stacking, Appl. Sci. 13(4) (2023), 2629. [21] Y. Wu, J. Shi, P. Wang, D. Zeng and C. Sun, DeepCatra: Learning flow‐and graph‐based behaviours for Android malware detection, IET Information Security 17(1) (2023), 118-130. [22] L. Huang, J. Xue, Y. Wang, D. Qu, J. Chen, N. Zhang and L. Zhang, EAODroid: Android malware detection based on enhanced API order, Chinese Journal of Electronics 32(5) (2023), 1169-1178.
|