Keywords and phrases: global dominating set, equitable dominating set, global equitable dominating set, global equitable domination number, Cartesian product.
Received: April 19, 2024; Revised: May 10, 2024; Accepted: May 29, 2024
How to cite this article: S. K. Vaidya and R. M. Pandit, Global equitable domination in Cartesian product of graphs, Advances and Applications in Discrete Mathematics 41(5) (2024), 341-356. https://doi.org/10.17654/0974165824025
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, 2nd ed., Springer, New York, 2012. [2] B. Basavanagoud and V. V. Teli, Equitable global domination in graphs, International Journal of Mathematical Archive 6(3) (2015), 122-125. [3] B. Hartnell and D. F. Rall, Domination in Cartesian products: Vizing’s conjecture, Domination in graphs, Vol. 209 of Monogr. Textbooks Pure Appl. Math. Dekker, New York, 1998, pp. 163-189. [4] B. L. Hartnell and D. F. Rall, Improving some bounds for dominating Cartesian products, Discuss. Math. Graph Theory 23(2) (2003), 261-272. [5] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, 1998. [6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in graphs - advanced topics, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, 1998. [7] X. Hou and Y. Lu, On the -domination number of Cartesian products of graphs, Discrete Math. 309 (2009), 3413-3419. [8] V. R. Kulli and B. Janakiram, The total global domination number of a graph, Indian J. Pure Appl. Math. 27(6) (1996), 537-542. [9] D. F. Rall, Packing and domination invariants on Cartesian products and direct products, Pre-conference proceedings of International Conference on Discrete Mathematics, Bangalore, India, 2006. [10] E. Sandueta, Equitable domination in some graphs, Appl. Math. Sci. 13(7) (2019), 309-314. [11] E. Sampathkumar, The global domination number of a graph, Journal of Mathematical and Physical Sciences 23(5) (1989), 377-385. [12] V. Swaminathan and K. Dharmalingam, Degree equitable domination on graphs, Kragujevac J. Math. 35(1) (2011), 191-197. [13] S. K. Vaidya and R. M. Pandit, Some new results on global dominating sets, ISRN Discrete Mathematics, Vol. 2012, Article ID 852129, 6 pages, 2012. doi: 10.5402/2012/852129. [14] S. K. Vaidya and R. M. Pandit, Some results on global dominating sets, Proyecciones 32(3) (2013), 235-244. [15] S. K. Vaidya and R. M. Pandit, Global equitable domination number of some wheel related graphs, International Journal of Mathematical and Combinatorics 3 (2016), 77-85. [16] S. K. Vaidya and R. M. Pandit, Global equitable domination in some degree splitting graphs, Notes on Number Theory and Discrete Mathematics 24(2) (2018), 74-84. [17] S. K. Vaidya and R. M. Pandit, The global equitable domination in graphs, Advances and Applications in Discrete Mathematics 39(2) (2023), 155-167. [18] V. G. Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk 23(6(144)) (1968), 117-134. [19] D. B. West, Introduction to Graph Theory, Prentice Hall of India, New Delhi, 2003.
|