Keywords and phrases: boundary layer flow, nanofluid, shooting method.
Received: April 13, 2024; Revised: May 2, 2024; Accepted: May 8, 2024; Published: June 3, 2024
How to cite this article: R. Prakash, B. S. Shashikala, K. R. Nagaraju, M. Kishore Kumar and T. Prasanna Kumar, Numerical study of carbon nanotubes suspended nanofluid flow past a surface with Darcy-Forchheimer porous medium: An application to heat exchanger design, JP Journal of Heat and Mass Transfer 37(3) (2024), 297-312. https://doi.org/10.17654/0973576324021
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME, 1995. [2] S. Rashidi, O. Mahian and E. M. Languri, Applications of nanofluids in condensing and evaporating systems: A review, J. Therm. Anal. Calorim. 131(3) (2018), 2027-2039. [3] S. S. Meibodi, A. Kianifar, O. Mahian and S. Wongwises, Second law analysis of a nanofluid-based solar collector using experimental data, J. Therm. Anal. Calorim. 126(2) (2016), 617-625. [4] O. Mahian, A. Kianifar, S. Z. Heris, D. Wen, A. Z. Sahin and S. Wongwises, Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger, Nano Energy 36 (2017), 134-155. [5] O. Mahian, A. Kianifar, A. Z. Sahin and S. Wongwises, Performance analysis of a minichannel-based solar collector using different nanofluids, Energy Conversion and Management 88 (2014), 129-138. [6] O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop and S. Wongwises, A review of the applications of nanofluids in solar energy, International Journal of Heat and Mass Transfer 57(2) (2013), 582-594. [7] O. Mahian, A. Kianifar, A. Z. Sahin and S. Wongwises, Heat transfer, pressure drop, and entropy generation in a solar collector using SiO2/water nanofluids: Effects of nanoparticle size and pH, Journal of Heat Transfer 137(6) (2015), 061011. [8] N. A. C. Sidik, M. Yazid and R. Mamat, A review on the application of nanofluids in vehicle engine cooling system, International Communications in Heat and Mass Transfer 68 (2015), 85-90. [9] A. Kasaeian, R. Daneshazarian, O. Mahian, L. Kolsi, A. J. Chamkha, S. Wongwises et al., Nanofluid flow and heat transfer in porous media: A review of the latest developments, International Journal of Heat and Mass Transfer 107 (2017), 778-791. [10] Omid Mahain et al., Recent advances in modeling and simulation of nanofluid flows, Phy. Reports 790 (2019), 1-48. [11] Basma Souyeh et al., Slip flow and radiative heat transfer behavior of Titanium alloy and ferromagnetic, Journal of Molecular Liquids 290 (2020), 111223. [12] A. Hajizadeh, N. A. Shah, S. I. A. Shah, I. L. Animasaun, M. Rahimi-Gorji and I. M. Alarifi, Free convection flow of nanofluids between two vertical plates with damped thermal flux, Journal of Molecular Liquids 289 (2019), 110964. [13] K. V. Prasad, K. Vajravelu, H. Vaidya and R. A. Van Gorder, MHD flow and heat transfer in a nanofluid over a slender elastic sheet with variable thickness, Results in Physics 7 (2017), 1462-1474. [14] D. Pal, N. Roy and K. Vajravelu, Thermophoresis and Brownian motion effects on magneto-convective heat transfer of viscoelastic nanofluid over a stretching sheet with nonlinear thermal radiation, International Journal of Ambient Energy 43(1) (2022), 413-424. [15] H. Xu, Modelling unsteady mixed convection of a nanofluid suspended with multiple kinds of nanoparticles between two rotating disks by generalized hybrid model, International Communications in Heat and Mass Transfer 108 (2019), 104275. [16] S. A. Bakar, N. S. Wahid, N. Arifin and N. S. Khashi’ie, The flow of hybrid nanofluid past a permeable shrinking sheet in a Darcy-Forchheimer porous medium with second order velocity slip, Waves in Random Complex Media, 2021. [17] A. Tassaddiq, S. Khan, M. Bilal, T. Gul, S. Mukhtar, Z. Shah et al., Heat and mass transfer together with hybrid nanofluid flow over a rotating disk, AIP Advances (2020), 12. [18] Sumio Iijima, Carbon nanotubes, past, present and future, Physica-B Condensed Matter Physics 323(4) (2020), 1-5. [19] J. P. Salvetat, J. M. Bonard, R. Bacsa, T. Stöckli and L. Forró, Physical properties of carbon nanotubes, Handbook of Carbon Nanotubes, 2022. [20] Youba Raj poudel et al., Synthesis, properties and applications of carbon nanotubes, Materials Today Phy. 7 (2018), 7-34. [21] S. Askari, A. Rashidi and H. Koolivand, Experimental investigation on the thermal performance of ultra-stable kerosene-based MWCNTs and Graphene nanofluids, International Communications in Heat and Mass Transfer 108 (2019), 104334. [22] Z. Ahmed, S. Nadeem, S. Saleem and R. Ellahi, Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface, Heat Transfer (2019), 17. [23] S. M. S. Murshed, C. A. Nieto de Castro, M. J. V. Lourenço, M. L. M. Lopes and F. J. V. Santos, A review of boiling and convective heat transfer with nanofluids, Renewable and Sustainable Energy Reviews 15(5) (2011), 2342-2354. [24] S. Nadeem, M. Riaz Khan and A. U. Khan, MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: Existence of dual solutions, Phys Scr. 94(7) (2019), 075204. [25] S. Baskar, M. Chandrasekaran, T. Vinod Kumar, P. Vivek and S. Ramasubramanian, Experimental studies on flow and heat transfer characteristics of secondary refrigerant-based CNT nanofluids for cooling applications, International Journal of Ambient Energy 41(3) (2020), 285-288. [26] D. Pal and G. Mandal, Effects of aligned magnetic field on heat transfer of water-based carbon nanotubes nanofluid over a stretching sheet, 2021. [27] T. Hayat, Aspects of 3D rotating hybrid CNT flow for a convective exponentially stretched surface, Applied Nanoscience, 2020. [28] L. J. Crane, Flow past a stretching plate, J. Applied Math. Phy. 21 (1970), 645-647. [29] K. Vajravelu and T. Roper, Flow and heat transfer in a second grade fluid over a stretching sheet, International Journal of Nonlinear Mechanics (1999), 6. [30] A. V. Roacaa, Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip, International Journal of Heat and Mass Transfer (2013), 10. [31] M. L. Levin and M. A. Miller, Maxwell’s Treatise on Electricity and Magnetism, (1981), 11. [32] R. L. Hamilton and O. K. Crosser, Thermal conductivity of heterogeneous two component system, Ind. and Engg. Chem. Fundamentals 1(3) (1962), 182-191. [33] Q. Z. Xue, Model for thermal conductivity of carbon nanotube-based composites, Physica B: Condensed Matter 368(1-4) (2005), 302-307.
|