Keywords and phrases: modeling, sorption isotherm, statistical physics, water activity.
Received: April 8, 2024; Accepted: May 14, 2024; Published: May 27, 2024
How to cite this article: Salah Knani, Amani Alruwaili, Nizar Lefi, Abdelmottaleb Ben Lamine, Waad Al-Blawi and Meshari Alanazi, Study of statistical physics on water sorption of flesh date: steric and energetic interpretations, JP Journal of Biostatistics 24(2) (2024), 309-333. https://doi.org/10.17654/0973514324019
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. H. Al-Muhtaseb, W. A. M. McMinn and T. R. A. Magee, Moisture sorption isotherm characteristics of food products: a review, Food Bioprod. Process. 80 (2002), 118-128. [2] S. Basu, U. S. Shivhare and A. S. Mujumdar, Models for sorption isotherms for foods: a review, Dry. Technol. 24 (2006), 917-930. [3] A. H. Al-Muhtaseb, W. A. M. McMinn and T. R. A. Magee, Water sorption isotherms of starch powders: Part 1: Mathematical description of experimental data, J. Food Eng. 61 (2004), 297-307. [4] J. Chirife and H. A. Iglesias, Equations for fitting water sorption isotherms of foods: Part 1—a review, Int. J. Food Sci. Technol. 13 (1978), 159-174. [5] N. Arslan and H. The fitting of various models to water sorption isotherms of tea stored in a chamber under controlled temperature and humidity, J. Stored Prod. Res. 42 (2006), 112-135. [6] J. Blahovec and S. Yanniotis, Modified classification of sorption isotherms, J. Food Eng. 91 (2009), 72-77. [7] S. Yanniotis and J. Blahovec, Model analysis of sorption isotherms, LWT - Food Sci. Technol. 42 (2009), 1688-1695. [8] P. C. Panchariya, D. Popovic and A. L. Sharma, Modeling of desorption isotherm of black tea, Dry. Technol. 19 (2001), 1177-1188. [9] F. Kaymak-Ertekin and A. Gedik, Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes, LWT - Food Sci. Technol. 37 (2004), 429-438. https://doi.org/10.1016/J.LWT.2003.10.012. [10] Z. B. Maroulis, E. Tsami, D. Marinos-Kouris and G. D. Saravacos, Application of the GAB model to the moisture sorption isotherms for dried fruits, J. Food Eng. 7 (1988), 63-78. [11] M. A. Al-Farsi and C. Y. Lee, Optimization of phenolics and dietary fibre extraction from date seeds, Food Chem. 108 (2008), 977-985. [12] I. A. Ahmed, A. W. K. Ahmed and R. K. Robinson, Chemical composition of date varieties as influenced by the stage of ripening, Food Chem. 54 (1995), 305-309. [13] B. Nourhène, B. Neila, K. Mohammed and K. Nabil, Sorptions isotherms and isosteric heats of sorption of olive leaves (Chemlali variety): experimental and mathematical investigations, Food Bioprod. Process. 86 (2008), 167-175. [14] T. P. Labuza, A. Kaanane and J. Y. Chen, Effect of temperature on the moisture sorption isotherms and water activity shift of two dehydrated foods, J. Food Sci. 50 (1985), 385-392. [15] S. Brunauer, L. S. Deming, W. E. Deming and E. Teller, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc. 62 (1940), 1723-1732. [16] N. H. Dural and A. L. Hines, Adsorption of water on cereal-bread type dietary fibers, J. Food Eng. 20 (1993), 17-43. https://doi.org/10.1016/0260-8774(93)90017-E. [17] V. M. Yakovenko, Applications of statistical mechanics to economics: entropic origin of the probability distributions of money, income, and energy consumption, 2012. ArXiv Prepr. ArXiv1204.6483. [18] S. Galam, Application of statistical physics to politics, Phys. A 274 (1999), 132-139. [19] P. A. P. Moran, Random processes in genetics, Math. Proc. Cambridge Philos. Soc. 54 (1958), 60-71. https://doi.org/DOI:10.1017/S0305004100033193. [20] B. Diu, C. Guthmann, D. Lederer and B. Roulet, Éléments de Physique Statistique, Paris, Hermann, 1989. [21] M. Ben Yahia, M. Tounsi, F. Aouaini, S. Knani, M. Ben Yahia and A. Ben Lamine, A statistical physics study of the interaction of [7]-helicene with alkali cations (K+ and Cs+): new insights on microscopic adsorption behavior, RSC Adv. 7 (2017). https://doi.org/10.1039/c7ra08387d. [22] M. B. Yahia, M. B. Yahia, F. Aouaini, S. Knani, H. Al-Ghamdi, E. S. Almogait and A. B. Lamine, Adsorption of sodium and lithium ions onto helicenes molecules: Experiments and phenomenological modeling, J. Mol. Liq. 288 (2019). https://doi.org/10.1016/j.molliq.2019.110998. [23] S. Wjihi, L. Sellaoui, M. Bouzid, H. Dhaou, S. Knani, A. Jemni and A. Ben Lamine, Theoretical study of hydrogen sorption on LaNi5 using statistical physics treatment: microscopic and macroscopic investigation, Int. J. Hydrogen Energy 42 (2017), 2699-2712. [24] F. Aouaini, S. Knani, M. Ben Yahia and A. Ben Lamine, Statistical physics studies of multilayer adsorption isotherm in food materials and pore size distribution, Phys. A 432 (2015), 373-390. [25] S. Knani, N. Mabrouk, S. T. Alanazi and N. Kechaou, Study of moisture adsorption isotherms characteristics of banana and thermodynamic properties using statistical physics formalism, Dry. Technol. 40 (2022), 3425-3433. https://doi.org/10.1080/07373937.2022.2053706. [26] H. Alyousef, F. Aouaini and M. Ben Yahia, New insights on physico-chemical investigation of water adsorption isotherm into seed of dates using statistical physics treatment: Pore size and energy distributions, J. Mol. Liq. 298 (2020), 112041. [27] M. Ben Yahia, L. B. H. Hsan, S. Knani, M. Ben Yahia, H. Nasri and A. Ben Lamine, Modeling of adsorption isotherms of zinc nitrate on a thin layer of porphyrin, J. Mol. Liq. 222 (2016), 576-585. [28] S. Knani, M. Khalfaoui, M. A. Hachicha, A. Ben Lamine and M. Mathlouthi, Modelling of water vapour adsorption on foods products by a statistical physics treatment using the grand canonical ensemble, Food Chem. 132 (2012), 1686 1692. [29] S. Knani, F. Aouaini, N. Bahloul, M. Khalfaoui, M. A. Hachicha, A. Ben Lamine and N. Kechaou, Modeling of adsorption isotherms of water vapor on Tunisian olive leaves using statistical mechanical formulation, Phys. A 400 (2014). https://doi.org/10.1016/j.physa.2014.01.006. [30] A. Farahnaky, N. Mansoori, M. Majzoobi and F. Badii, Physicochemical and sorption isotherm properties of date syrup powder: antiplasticizing effect of maltodextrin, Food Bioprod. Process. 98 (2016), 133-141. [31] S. Knani, F. Aouaini, N. Bahloul, M. Khalfaoui, M. A. Hachicha, A. Ben Lamine and N. Kechaou, Modeling of adsorption isotherms of water vapor on Tunisian olive leaves using statistical mechanical formulation, Phys. A 400 (2014), 57-70. [32] N. Arslan and H. Modelling of water sorption isotherms of macaroni stored in a chamber under controlled humidity and thermodynamic approach, J. Food Eng. 69 (2005), 133-145. [33] F. Aouaini, S. Knani, M. Ben Yahia and A. Ben Lamine, Statistical physics studies of multilayer adsorption isotherm in food materials and pore size distribution, Phys. A 432 (2015), 373-390. https://doi.org/10.1016/j.physa.2015.03.052. [34] H. Alyousef, M. Ben Yahia and F. Aouaini, Statistical physics modeling of water vapor adsorption isotherm into kernels of dates: experiments, microscopic interpretation and thermodynamic functions evaluation, Arab. J. Chem. 13 (2020), 4691-4702. [35] B. J. Stanley and G. Guiochon, Importance of the accuracy of experimental data in the nonlinear chromatographic determination of adsorption energy distributions, Langmuir 10 (1994), 4278-4285. [36] G. F. Cerofolini, Localized adsorption on heterogeneous surfaces, Thin Solid Films 23 (1974), 129-152.
|