Keywords and phrases: multiple sclerosis, voluntary disclosure, machine learning, multiple sclerosis diagnosis
Received: April 7, 2024; Revised: April 28, 2024; Accepted: May 3, 2024; Published: May 14, 2024
How to cite this article: Rawan A. Al-Mutairi and Amal Aljohani, A prediction model investigating voluntary sharing of information by people living with multiple sclerosis, JP Journal of Biostatistics 24(2) (2024), 287-307. https://doi.org/10.17654/0973514324018
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] P. D. Rumrill Jr, R. T. Roessler, J. Li, K. Daly and M. Leslie, The employment concerns of Americans with multiple sclerosis: perspectives from a national sample, Work 52(4) (2015), 735-748. [2] R. T. Roessler, P. D. Rumrill Jr, J. Li and M. J. Leslie, Predictors of differential employment statuses of adults with multiple sclerosis, Journal of Vocational Rehabilitation 42(2) (2015), 141-152. [3] L. Rzepinski, M. Zawadka-Kunikowska, J. Kucharczuk, J. Newton and P. Zalewski, New insights into the socio-economic aspects of multiple sclerosis in a cohort of Polish patients, Annals of Agricultural and Environmental Medicine, 28(1) (2021), 99-106. [4] E. McGahey, G. Waghorn, C. Lloyd, S. Morrissey and P. L. Williams, Formal plan for self‐disclosure enhances supported employment outcomes among young people with severe mental illness, Early Intervention in Psychiatry 10(2) (2016), 178-185. [5] V. M. Kordovski, S. E. Frndak, C. S. Fisher, J. Rodgers, B. Weinstock-Guttman R. H. Benedict, Identifying employed multiple sclerosis patients at-risk for job loss: when do negative work events pose a threat? Multiple Sclerosis and Related Disorders 4(5) (2015), 409-413. [6] J. Maurino et al., Workplace difficulties, health-related quality of life, and perception of stigma from the perspective of patients with multiple sclerosis, Multiple Sclerosis and Related Disorders 41 (2020), 102046. [7] A. K. Kirk-Brown, P. A.Van Dijk, R. D. Simmons, M. P. Bourne and B. K. Cooper, Disclosure of diagnosis of multiple sclerosis in the workplace positively affects employment status and job tenure, Multiple Sclerosis Journal 20(7) (2014), 871-876. [8] S. E. Frndak, V. M. Kordovski, D. Cookfair, J. D. Rodgers, B. Weinstock-Guttman and R. H. Benedict, Disclosure of disease status among employed multiple sclerosis patients: association with negative work events and accommodations, Multiple Sclerosis Journal 21(2) (2015), 225-234. [9] P. Calabrese, G. Kobelt, J. Berg, D. Capsa and J. Eriksson, New insights into the burden and costs of multiple sclerosis in Europe: results for Switzerland, Multiple Sclerosis Journal 23(2_suppl) (2017), 192-203. [10] S. Abolhassani, A. Yazdannik, F. Taleghani and A. Zamani, Social aspects of multiple sclerosis for Iranian individuals, Disability and Rehabilitation 37(4) (2015), 319-326. [11] M. G. Jaworski III, T. A. Fuchs, M. G. Dwyer, C. Wojcik, R. Zivadinov, B. Weinstock-Guttman and R. H. Benedict, Conscientiousness and deterioration in employment status in multiple sclerosis over 3 years, Multiple Sclerosis Journal 27(7) (2021), 1125-1135. [12] L. Gill and S. M. Hynes, Disclosing a diagnosis in the workplace: perspective of people with multiple sclerosis, International Journal of Disability Management 15 (2020), e8. [13] C. Hategeka, A. L. Traboulsee, K. McMullen and L. D. Lynd, Association of unemployment and informal care with stigma in multiple sclerosis: evidence from the survey on living with neurological conditions in Canada, International Journal of MS Care 21(5) (2019), 214-225. [14] S. Kalantari, M. Karbakhsh, Z. Kamiab, Z. Kalantari and M. A. Sahraian, Perceived social stigma in patients with multiple sclerosis: a study from Iran, Acta Neurol. Taiwan 27(1) (2018), 1-8. [15] A. D. Bass et al., Effect of multiple sclerosis on daily activities, emotional well-being, and relationships: the global vsMS survey, International Journal of MS Care 22(4) (2020), 158-164. [16] R. Alshamrani, A. Althbiti, Y. Alshamrani, F. Alkomah and X. Ma, Model-driven decision making in multiple sclerosis research: existing works and latest trends, Patterns 1(8) (2020), 100121. [17] Z. Ekşİ, M. Çakiroğlu, C. Öz, A. AralaŞmak, H. H. Karadelİ and M. E. Özcan, Differentiation of relapsing-remitting and secondary progressive multiple sclerosis: a magnetic resonance spectroscopy study based on machine learning, Arquivos de Neuro-psiquiatria 78 (2020), 789-796. [18] A. Ion-Mărgineanu, G. Kocevar, C. Stamile, D. M. Sima, F. Durand-Dubief, S. Van Huffel and D. Sappey-Marinier, Machine learning approach for classifying multiple sclerosis courses by combining clinical data with lesion loads and magnetic resonance metabolic features, Frontiers in Neuroscience 11 (2017), 257329. [19] Y. Karaca and S. Hayta, The significance of artificial neural networks algorithms classification in the multiple sclerosis and its subgroups, Significance 2(12) (2015), 1-7. [20] J. Yperman, T. Becker, D. Valkenborg, V. Popescu, N. Hellings, B. V. Wijmeersch and L. M. Peeters, Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis, BMC Neurology 20 (2020), 1-15. [21] S. O. Olatunji et al., Comprehensible machine-learning-based models for the pre-emptive diagnosis of multiple sclerosis using clinical data: a retrospective study in the eastern province of Saudi Arabia, International Journal of Environmental Research and Public Health 20(5) (2023), 4261. [22] C. Walton et al., Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, Multiple Sclerosis Journal 26(14) (2020), 1816-1821. [23] M. AlJumah et al., Rising prevalence of multiple sclerosis in Saudi Arabia, a descriptive study, BMC Neurology 20 (2020), 1-7.
|