Keywords and phrases: discretizations, finite difference method, blow-up, finite element method, numerical blow-up time, nonlinear Schrödinger equation.
How to cite this article: N’takpe Jean-Jacques, L. Boua Sobo Blin, Nachid Halima and Kambire D. Gnowille, The limit of blow-up dynamics solutions for a class of nonlinear critical Schrödinger equations, Advances in Differential Equations and Control Processes 31(2) (2024), 207-238. https://doi.org/10.17654/0974324324011
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] O. Bang, P. L. Christiansen, K. O. Rasmussen and Yu. B. Gaididei, The role of nonlinearity in modeling energy transfer in Scheibe aggregates in nonlinear excitations in bimolecular, M. Peyrard, ed., Les Editions de Physique, Springer, Berlin, 1995, pp. 317-336. [2] G. D. Akrivis, V. A. Dougalis, O. A. Krakashian and W. R. McKinney, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger, SIAM J. Sci. Comput. 25 (2008), 186-212. [3] W. Dai, Absolute stable explicit and semi-explicit schemes for Schrödinger equations, Math. Num. Sinica 11 (1989), 128-131. [4] M. Delfour, M. Fortin and G. Payre, Finite-difference solutions of a nonlinear Schrödinger equation, J. Comput. Phys. 44 (1981), 277-288. [5] T. Cazenave, Equations de Schrödinger non linéaires en dimension deux, Proc. Roy. Sot. Edinburgh 84(3-4) (1979), 327-346 [6] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger operators, Math. Phys. 18 (1977), 1794-1797. [7] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), 1-32. [8] X. Liu, G. Simpson and C. Sulem, Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation, J. Nonlinear Sci. 23(4) (2013), 557 583. [9] S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305-330. [10] Katsuya Ishizaki, Admissible solutions of the Schwarzian differential equation, J. Austral. Math. Soc. (Series A) 50 (1991), 258-278. [11] P. L. Kelley, Self-focusing of optical beams, Phys. Rev. Lett. 15 (1965), 1005. DOI: https://doi.org/10.1103/PhysRevLett.15.1005. [12] S. Klainerman and G. Ponce, Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math. 36 (1983), 133-141. [13] N. E. Kosmatov, V. F. Sevets and V. E. Zakharov, Computer simulation of wave collapses in nonlinear Schrödinger equations, Phys. D. 52 (1991), 16-35. [14] M. J. Landman, G. C. Papanicolaou, C. Sulem and P.-L. Sulem, Rate of blow-up for solutions of the nonlinear Schrödinger equation at critical dimensions, Phys. Rev. A 38 (1988), 3837-3843. [15] B. LeMesurier, G. Papanicolaou, C. Sulem and P. L. Sulem, Local structure of the self-focusing singularity of the nonlinear Schrödinger equation. Phys. D 32(2) (1988), 210-226. DOI : https://doi.org/10.1016/0167-2789(88)90052-8. [16] D. W. McLaughlin, G. C. Papanicolaou, C. Sulem and P. L. Sulem, Focusing singularity of the cubic Schrödinger equation, Phys. Rev. A 34 (1986), 1200. DOI : https://doi.org/10.1103/PhysRevA.34.1200. [17] K. Mio, T. Ogino, K. Minami and S. Takeda, Modified nonlinear Schrödinger equation for Alfvén waves propagating along magnetic field in cold plasma, J. Phys. Soc. 41 (1976), 265-271. [18] D. W. McLavohd, G. C. Papnioolaou, C. Buldm and P.-L. Sulem, Focusing singularity of the cubic of nonlinear Schrödinger equations, Phys. Rev. A 84 (1986), 1200-1210. [19] T. Nakagawa, Blowing up on the finite difference solution to Appl. Math. Optim. 2 (1976), 337-350. [20] F. Ivanauskas and M. Radziunas, On convergence and stability of the explicit difference method for solution of nonlinear Schrödinger equations, SIAM J. Numer. Anal. 36 (1999), 1466-1481. [21] K. Rypdal and J. J. Rasmussen, Blow-up in nonlinear Schroedinger equations-I a general review, Phys. Ser. 33 (1986), 481. DOI: https://doi.org/10.1088/0031-8949/33/6/001 . [22] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley-Interscience Publication, New York, 1991. [23] W. A. Strauss, Nonlinear Scattering theory, “Scattering Theory in Mathematical Physics”, J. A. Lavita and J.-P. Marchand, eds., Reidel, Dordrecht, Holland, 1974, pp. 53-78. [24] P. L. Sulem, C. Sulem and A. Patera, Numerical simulation of singular solutions to the two-dimensional cubic Schrödinger equation, Commun. Pure Appl. Math. 37 (1984), 755. DOI: https://doi.org/10.1002/cpa.3160370603. [25] T. R. Taha, A numerical scheme for the nonlinear Schrödinger equation, Comput. Math. Appl. 22 (1991), 77-84. [26] Y. Tourigny and J. M. Sanz Serna, The numerical study of blow-up with application to a nonlinear Schrödinger equation, J. Comp. Phys. 102 (1992), 407 416. [27] M. Tsutsumi, On global solutions to the initial-boundary value problem for the nonlinear Schrödinger equations in exterior domains, Comm. Partial Differential Equations 28 (1991), 885-907. [28] V. E. Zakharov and A. B. Shabat, Exact theory of two dimensional self focusing and one dimensional self modulation of waves in nonlinear media, Soviet Physics, Journal of Experimental and Theoretical Physics 34 (1972), 62-69. [29] V. E. Zakharov, Collapse of Langmuir waves, Journal of Experimental and Theoretical Physics 35 (1972), 908. [30] V. E. Zakharov, S. L. Musher and A. M. Rubenchik, Hamiltonian approach to the description of nonlinear plasma phenomena, Physics Reports 129(5) (1985), 285-366. DOI: https://doi.org/10.1016/0370-1573(85)90040-7. [31] V. E. Zakharov and V. S. Synakh, The nature of the self-focusing singularity, Sov. Phys.-JETP 41 (1976), 465-468. [32] L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks, J. Differential Equations 197(1) (2004), 162-196. Doi: https://doi.org/10.1016/S0022-0396(03)00170-0. [33] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys. 87 (1983), 567-576. [34] L. Wu, Dufort-Frankel type methods for linear and nonlinear Schrödinger equations, SIAM J. Numer. Anal. 33 (1996), 1526-1533.
|