Keywords and phrases: biomagnetic fluid, magnetic dipole, non-Newtonian nanofluid, nanoparticles, blood, stretching sheet, heat transfer.
Received: March 22, 2023; Accepted: April 22, 2023; Published: April 12, 2024
How to cite this article: Jahangir Alam, M. G. Murtaza, E. E. Tzirtzilakis and M. Ferdows, Partial slip effect of Cu, Au, TiO2-nanoparticles in steady biomagnetic fluid flow and heat transfer over a stretching sheet in the presence of magnetic dipole, International Journal of Materials Engineering and Technology 23(1) (2024), 37-56. http://dx.doi.org/10.17654/0975044424003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, Anomalously thermal conductivity enhancement in a nanotube suspensions, Appl. Phys. Lett. 79 (2001), 2252-2254. [2] N. Bachok, A. Ishak and I. Pop, Stagnation-point flow over a stretching/shrinking sheet in a nanofluid, Nanoscale Research Letters 6 (2011), Article number 623. 10.1186/1556-276X-6-623. [3] O. D. Makinde and A. Aziz, Boundary layer flow of a nanofluid past stretching sheet with convective boundary condition, Int. J. Therm. Sci. 50 (2011), 1326-1332. [4] A. Ogulu and E. Amos, Modeling pulsatile blood flow within a homogeneous porous bed in the presence of a uniform magnetic field and time-dependent suction, Int. Commun. Heat Mass Transfer 34 (2007), 989-995. [5] I. M. Hatam, J. Hatami and D. D. Ganji, Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel, Comput. Methods Programs Biomed. 113 (2014), 632-641. [6] R. Kandasamy, R. Mohamad and M. Ismoen, Impact of chemical reaction on Cu, Al2O3 and SWCNTS-nanofluid flow under slip conditions, Int. J. Eng. Sci. Technol. 19 (2015), 700-709. 10.1016/j.jestch.2015.11.011. [7] K. M. Vajravelu, K. V. Prasad, L. Jinho, L. Chanhoon, I. Pop and A. Robert, Convective heat transfer in the flow of viscous Ag-water and Cu-water nanofluids over a stretching surface, Int. J. Therm. Sci. 50 (2011), 843851. [8] A. Ahmed and S. Nadeem, The study of (Cu, TiO2, Al2O3) nanoparticles as antimicrobials of blood flow through diseased arteries, J. Mol. Liq. 216 (2016), 615-623. [9] M. M. Bhatti, A. Zeeshan and R. Ellahi, Endoscope analysis on peristaltic blood flow of Sisko fluid with Titanium magneto-nanoparticles, Comput. Biol. Med. 78 (2016), 29-41. [10] A. Rahbari, M. Fakour and A. Hamzehnezhad, Heat transfer and fluid flow of blood with nanoparticles through porous vessels in a magnetic field: a quasi-one dimensional analytical approach, Math. Biosci. 83 (2017), 38-47. [11] U. Khan, N. Ahmed and S. T. Mohyud-Din, Stoke’s first problem for carbon nanotubes suspended nanofluid flow under the effect of slip boundary condition, J. Nanofluids 5 (2016), 239-244. [12] W. Abbas and M. M. Magdy, Heat and mass transfer analysis of nanofluid flow based on Cu, Al2O3 and TiO2 over a moving rotating plate and impact of various nanoparticle shapes, Math. Probl. Eng. (2020), Article ID 9606382, 1-12. [13] B. A. Kutta, S. Manjunthm, S. Jayanthi and B. J. Gressha, Performance of four different nanoparticles in boundary layer flow over a stretching sheet in porous medium driven by buoyancy force, Int. J. Appl. Mech. Eng. 25(2) (2020), 1-10. [14] W. H. Azmi, K. Abdul Hamid, N. A. Usri, R. Mamat and M. S. Mohamad, Heat transfer and friction factor of water and ethylene glycol mixture based TiO2 and Al2O3 nanofluids under turbulent flow, International Communications in Heat and Mass Transfer 76 (2016), 24-32. [15] A. R. Sajadi and M. H. Kazemi, Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube, International Communications in Heat and Mass Transfer 38 (2011), 1474-1478. [16] S. R. R. Reddy and P. B. A. Reddy, Biomathematical analysis for the stagnation point flow over nonlinear stretching surface with the second order velocity slip and Titanium alloy nanoparticle, Frontiers in Heat and Mass Transfer (FHMT) 10(13) (2018), 1-11. [17] R. Sharma, A. Ishak and I. Pop, Partial slip flow and heat transfer over a stretching sheet in a nanofluid, Math. Probl. Eng. (2013), Article ID 9606382, 1-7. 10.1155/2013/72457. [18] E. E. Tzirtzilakis, A simple numerical methodology for BFD problems using stream function vorticity formulation, Comm. Numer. Methods Engrg. 24 (2008), 683-700. [19] H. I. Andersson and O. A. Valnes, Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole, Acta Mechanica 128(1-2) (1998), 39-47. [20] S. Aman, I. Khan and M. Z. Salleh, Impacts of gold nanoparticles on MHD mixed convection Poiseuille flow of nanofluid passing through a porous medium in the presence of thermal radiation, thermal diffusion and chemical reaction, Neural Comput. Appl. 30 (2018), 789-797. 10.1007/s00521-016-2688-7. [21] M. J. Alam and M. G. Murtaza, Two dimensional biomagnetic fluid flow and heat transfer over a nonlinear stretching sheet with temperature dependent viscosity, Scholars Journal of Physics, Mathematics and Statistics 7(8) (2020), 131-142.
|