Keywords and phrases: perturbation iteration, Taylor expansions, algorithm, mathematical model, cardiovascular/respiratory system, numerical simulation results.
Received: November 16, 2023; Accepted: March 9, 2024; Published: April 6, 2024
How to cite this article: Mahamat Saleh DAOUSSA HAGGAR, Marcel GAHAMANYI and Jean Marie NTAGANDA, Combination of perturbation and Taylor series expansions for solving mathematical model of cardiovascular-respiratory system, International Journal of Numerical Methods and Applications 24(1) (2024), 79-94. http://dx.doi.org/10.17654/0975045224006
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Y. Aksoy and M. Pakdemirli, New perturbation-iteration solutions for Bratu-type equations, Comput. Math. Appl. 59(8) (2010), 2802-2808. [2] Theogene Bizimungu, Dominique Harelimana and Jean Marie Ntaganda, A client-server and web-based graphical user interface design for the mathematical model of cardiovascular-respiratory system, Applied Computational Intelligence and Soft Computing 2021 (2021), Article ID 5581937, 11 pp. https://doi.org/10.1155/2021/5581937. [3] L. Cheng, O. Ivanova, H. H. Fan and M. C. K. Khoo, An integrative model of respiratory and cardiovascular control in sleep-disordered breathing, Respir. Physiol. Neurobiol. 174 (2010), 4-28. [4] K. Hemalatha and M. Manivannan, Cardiopulmonary model to study interaction hemodynamics in Muller maneuver, Int. J. Numer. Meth. Biomed. Engng. 27 (2011), 1524-1544. [5] R. L. Hester, A. J. Brown, L. Husband, R. Iliescu, D. Pruett, R. L. Summers and T. G. Coleman, HumMod: a modeling environment for the simulation of integrative human physiology, Front Physiol. 2 (2011), 12. [6] F. S. Grodins, Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics, Q. Rev. Biol. 34 (1959), 93-116. [7] F. S. Grodins, J. S. Gray, K. R. Schroeder, A. L. Norins and R. W. Jones, Respiratory responses to CO2 inhalation: a theoretical study of nonlinear biological regulator, J. Appl. Physiol. 7 (1954), 283-308. [8] A. C. Guyton, T. G. Coleman and H. J. Granger, Circulation: overall regulation, Annu. Rev. Physiol. 34 (1972), 13-46. [9] E. Magosso and M. Ursino, A mathematical model of CO2 effect on cardiovascular regulation, Am. J. Physiol. Heart Circ. Physiol. 281(5) (2001), H2036-H2052. doi: 10.1152/ajpheart.2001.281.5.H2036. PMID: 11668065. [10] Jean Marie Ntaganda and Benjamin Mampassi, Modelling blood partial pressures of the human cardiovascular respiratory system, Appl. Math. Comput. 187 (2007), 1100-1108. [11] Jean Marie Ntaganda, Japhet Niyobuhungiro, Wellars Banzi, Lydie Mpinganzima, Froduald Minani, Jean Bosco Gahutu, Vincent Dusabejambo and Immaculate Kambutse, Mathematical modelling of human cardiovascular-respiratory system responses to exercise in Rwanda, International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO) 9(3) (2019), 287-308. [12] M. Pakdemirli, Y. Aksoy and H. Boyaci, A new perturbation-iteration approach for first order differential equations, Math. Comput. Appl. 16(4) (2011), 890-899. [13] M. Pakdemirli, Review of the perturbation-iteration method, Math. Comput. Appl. 18(3) (2013), 139-151. [14] S. Timischl, A global model of the cardiovascular and respiratory system, Ph. D. Thesis, Karl-Franzens Universität, Graz, Austria, 1998. [15] M. Ursino and E. Magosso, Acute cardiovascular response to isocapnic hypoxia. I. A mathematical model, Am. J. Physiol. Heart Circ. Physiol. 279 (2000), H149-H165.
|