Keywords and phrases: connections, tensors, vector fields, Weil bundle.
Received: January 5, 2024; Accepted: March 9, 2024; Published: April 11, 2024
How to cite this article: Olivier Mabiala Mikanou, Ange Maloko Mavambou, Apépé Jugendene Nguéngué Louvouandou and Basile G. R. Bossoto, Some elements of Riemann geometry on Weil bundles, JP Journal of Geometry and Topology 30(1) (2024), 29-62. https://doi.org/10.17654/0972415X24003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] R. J. Alonso, Jet manifold associated to Weil bundle, Archivum Mathematicum 36(3) (2000), 195-199. [2] B. G. R. Bossoto and E. Okassa, Champs de vecteurs et formes differentielles sur une variété des points proches, Archivum Mathematicum (BRNO) 44 (2008), 159-171. [3] E. Ehresmann, Les prolongements d’une variété differentiable, I, Calcul de jets, prolongement principal, Comptes Rendus 233 (1951), 598-600. [4] E. Ehresmann, Les prolongements d’une variété differentiable, II, L’espace des jets d’ordre r de dans Comptes Rendus 233 (1951), 777-779. [5] D. R. Grigore and D. Krupka, Invariant of velocities and higher order Grassmann bundle, J. Geom. Phys. 24 (1998), 244-264. [6] I. Kolar and P. J. Michor, Slovak Natural Operations in Differential Geometry, Springer, 1993. [7] I. Kolar, Affine structure on Weil bundles, Nagoya Math. J. 158 (2000), 99-106. [8] I. Kolar, Handbook of global analysis, ch: Weil bundles as generalized jet space, Elsevier, 2008, pp. 625-664. [9] A. Morimoto, Prolongation of connections to bundles of infinitely near points, J. Diff. Geom. 11 (1976), 479-498. [10] A. S. E. Mialebama Bouesso, F. R. Lekaka Ndinga and B. G. R. Bossoto, Differential forms and cohomology on Weil bundles, Journal of Mathematics 2023 (2023), Art. ID 5109943, 8 pp. [11] V. Nkou, B. G. R. Bossoto and E. Okassa, New properties of prolongations of Linear connections on Weil bundles, Acta Mathematica Universitatis Comenianae 85(1) (2016), 69-80. [12] V. Nkou, B. G. R. Bossoto and E. Okassa, New characterizations of vector fields on Weil bundles, Theoretical Mathematics and Applications 5(2) (2015), 1-17. [13] E. Okassa, Prolongements des champs de vecteurs à des variétés des points proches, C. R. Acad. Sci. Paris 300(6) (1985), 173-176. [14] E. Okassa, Prolongements des champs de vecteurs à des variétés des points proches, Ann. Fac. Sci. Toulouse Math. VIII(3) (1986-1987), 349-366. [15] E. Okassa, Relèvement des structures symplectiques et pseudo-Riemanniennes à des variétés des points proches, Nagoya Math. J. 115 (1989), 63-71. [16] A. Weil, Théorie des points proches sur les variétés différentiables, Colloq. Geom. Diff. (1953), 111-117.
|