Keywords and phrases: efficiency, comparison, perturbation iteration method, Euler method, Matlab approach, response, heart rate, alveolar ventilation, glucose, insulin, physical activity.
Received: November 16, 2023; Accepted: March 20, 2024; Published: April 3, 2024
How to cite this article: Mahamat Saleh DAOUSSA HAGGAR and Jean Marie Ntaganda, Efficiency of perturbation iteration method compared to Euler and Matlab approaches for solving a mathematical model of blood glucose and insulin during physical activity, Universal Journal of Mathematics and Mathematical Sciences 20(1) (2024), 1-17. http://dx.doi.org/10.17654/2277141724001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] R. N. Bergman, D. T. Finegood and S. E. Kahn, The evolution of beta-cell dysfunction and insulin resistance in type 2 diabetes, Eur. J. Clin. Invest. 32(Suppl. 3) (2002), 35-45. doi: 10.1046/j.1365-2362.32.s3.5.x. PMID: 12028373. [2] D. L. Bennett and S. A. Gourley, Asymptotic properties of a delay differential equation model for the interaction of glucose with the plasma and interstitial insulin, Appl. Math. Comput. 151 (2004), 189-207. [3] C. Simon and G. Brandenberger, Ultradian oscillations of insulin secretion in humans, Diabetes 51 (2002), S258-S261. [4] J. Sturis, K. S. Polonsky, E. Mosekilde and E. Van Cauter, Computer-model for mechanisms underlying ultradian oscillations of insulin and glucose, Am. J. Physiol. 260 (1991), E801-E809. [5] I. M. Tolic, E. Mosekilde and J. Sturis, Modeling the insulin-glucose feedback system: the significance of pulsatile insulin secretion, J. Theoret. Biol. 207 (2000), 361-375. [6] B. Topp, K. Promislow, G. De Vries, R. M. Miura and D. T. Finegood, A model of -cell mass, insulin, and glucose kinetics: pathways to diabetes, J. Theoret. Biol. 206 (2000), 605-619. [7] R. N. Bergman, Y. Z. Ider, C. R. Bowden and C. Cobelli, Quantitative estimation of insulin sensitivity, Am. J. Physiol. 236 (1979), E667-E677. [8] R. N. Bergman and C. Cobelli, Minimal modeling/partition analysis and the estimation of insulin sensitivity, Federation Proceedings 39 (1980), 110-115. [9] A. De Gaetano and O. Arino, Mathematical modeling of the intravenous glucose tolerance test, J. Math. Biol. 40 (2000), 136-168. [10] A. Mukhopadhyay, A. DeGaetano and O. Arino, Modeling the intravenous glucose tolerance test: a global study for a single-distributed-delay model, Discrete Contin. Dyn. Syst. Ser. B 4(2) (2004), 407-417. [11] V. W. Bolie, Coefficients of normal blood glucose regulation, J. Appl. Physiol. 16 (1961), 783-788. [12] C. Cobelli, G. Pacini, G. Toffolo and L. Saccà, Estimation of insulin sensitivity and glucose clearance from minimal model: new insights from labeled IVGTT, Am. J. Physiol. 250(5 Pt 1) (1986), E591-E598. doi: 10.1152/ajpendo.1986.250.5.E591. PMID: 3518490. [13] R. N. Bergman, L. S. Phillips and C. Cobelli, Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose, J. Clin. Invest. 68(6) (1981), 1456-1467. [14] C. Cobelli, A. Caumo and M. Omenetto, Minimal model SG overestimation and SI underestimation: improved accuracy by a Bayesian two-compartment model, Am. J. Physiol. 277(3) (1999), E481-E488. doi:10.1152/ajpendo.1999.277.3.E481. PMID: 10484360. [15] R. Hovorka, F. Shojaee-Moradie, P. V. Carroll, L. J. Chassin, I. J. Gowrie, N. C. Jackson, R. S. Tudor, A. M. Umpleby and R. H. Jones, Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT, Am. J. Physiol. Endocrinol. Metab. 282(5) (2002), 992-1007. [16] Wellars Banzi, Immaculate Kambutse, Vincent Dusabejambo, Eric Rutaganda, Froduald Minani, Japhet Niyobuhungiro, Lydie Mpinganzima and Jean Marie Ntaganda, Mathematical modelling of glucose-insulin system and test of abnormalities of Type 2 diabetic patients, Int. J. Math. Math. Sci. Volume 2021, Article ID 6660177. https://doi.org/10.1155/2021/6660177. [17] A. Drozdov and H. Khanina, A model for ultradian oscillations of insulin and glucose, Math. Comput. Modelling 22 (1995), 23-38. [18] J. M. Ntaganda and B. Mampassi, Modelling glucose and insulin in diabetic during physical activity, Proceeding of the Fourth International Conference Held in Al Ain at United Arab Emirates University from 11th to 14th March 2012, United Arab Emirates, Vol. 1, 2012, pp. 331-344. [19] Jean Marie Ntaganda, Froduald Minani, Wellars Banzi, Lydie Mpinganzima, Japhet Niyobuhungiro, Vincent Dusabejambo, Immaculate Kambutse and Eric Rutaganda, Analysis of physical activity effects on plasma glucose-insulin system dynamics: a mathematical model, Transactions of the Institute of Measurement and Control 43(14) (2021), 3272-3281. [20] Y. Aksoy and M. Pakdemirli, New perturbation-iteration solutions for Bratu-type equations, Comput. Math. Appl. 59(8) (2010), 2802 2808. [21] S. Del Prato and A. Tiengo, The importance of first phase insulin secretion: implications for the therapy of type 2 diabetes mellitus, Diabetes/Metabolism Research and Review 17 (2001), 164-174. [22] D. Giugliano, A. Ceriello and G. Paolisso, Oxidative stress and diabetic vascular complications, Diabetes Care 19 (1996), 257-267. [23] M. Pakdemirli, Y. Aksoy and H. Boyaci, A new perturbation-iteration approach for first order differential equations, Math. Comput. Appl. 16(4) (2011), 890-899. [24] M. Pakdemirli, Review of the perturbation-iteration method, Math. Comput. Appl. 18(3) (2013), 139-151.
|