Keywords and phrases: Industry 4.0, Supply Chain 4.0, automotive, readiness model.
Received: January 22, 2024; Accepted: March 17, 2024; Published: April 5, 2024
How to cite this article: Abdellah Sassi, Mohamed Ben Ali, Ahmed Adri, Hassan Ifassiouen and Said Rifai, The level of readiness for implementing Industry 4.0 technologies in the supply chain of Moroccan automotive companies, Advances and Applications in Statistics 91(5) (2024), 615-634. http://dx.doi.org/10.17654/0972361724033
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] T. D. Oesterreich and F. Teuteberg, Understanding the implications of digitization and automation in the context of Industry 4.0: a triangulation approach and elements of a research agenda for the construction industry, Computers in Industry 83 (2016), 121-139. [2] K. Douaioui, M. Fri, C. Mabroukki and E. A. Semma, The interaction between Industry 4.0 and smart logistics: concepts and perspectives, 2018 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA), Tangier: IEEE, 2018, pp. 128-132. doi: 10.1109/LOGISTIQUA.2018.8428300. [3] A. HAKAM, L’industrie automobile au Maroc: Vers de nouveaux gisements de croissance, Ministry of Economy and Finance (Ministère de l’Économie et des Finances), Morocco, 2020, p. 30. [Online]. Available: https://depf.finances.gov.ma/publications/automobile/automobile.pdf. Consulted: June 25, 2022. [4] A. Stevenson, Oxford Dictionary of English, 3rd ed., Oxford University Press, New York, 2010, p. 2069. DOI:10.1093/acref/9780199571123.001.0001. [5] A. P. T. Pacchini, W. C. Lucato, F. Facchini and G. Mummolo, The degree of readiness for the implementation of Industry 4.0, Computers in Industry 113 (2019), 103125. doi: 10.1016/j.compind.2019.103125. [6] S. Menon and S. Shah, Are SMEs ready for Industry 4.0 technologies: an exploratory study of I 4.0 technological impacts, 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM), Dubai, United Arab Emirates: IEEE, 2020, pp. 203-208. doi: 10.1109/ICCAKM46823.2020.9051550. [7] F. Facchini, J. Oleśków-Szłapka, L. Ranieri and A. Urbinati, A maturity model for logistics 4.0: an empirical analysis and a roadmap for future research, Sustainability 12(1) (2019), 86. doi: 10.3390/su12010086. [8] S. Mittal, M. A. Khan, D. Romero and T. Wuest, A critical review of smart manufacturing and Industry 4.0 maturity models: implications for small and medium-sized enterprises (SMEs), Journal of Manufacturing Systems 49 (2018), 194-214. doi: 10.1016/j.jmsy.2018.10.005. [9] Y. Sanae, F. Faycal and M. Ahmed, A supply chain maturity model for automotive SMEs: a case study, IFAC-PapersOnLine 52(13) (2019), 2044-2049. doi: 10.1016/j.ifacol.2019.11.506. [10] J. Basl and P. Doucek, A metamodel for evaluating enterprise readiness in the context of Industry 4.0, Information 10(3) (2019), 89. doi: 10.3390/info10030089. [11] A. Schumacher, S. Erol and W. Sihn, A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises, Procedia CIRP 52 (2016), 161-166. doi: 10.1016/j.procir.2016.07.040. [12] C. Leyh, T. Schäffer, K. Bley and S. Forstenhäusler, Assessing the IT and software landscapes of Industry 4.0-enterprises: the maturity model SIMMI 4.0, Information Technology for Management: New Ideas and Real Solutions, Vol. 277, E. Ziemba, ed., Lecture Notes in Business Information Processing, Springer International Publishing, Cham, 2017, pp. 103-119. doi: 10.1007/978-3-319-53076-5_6. [13] Y. Riahi, T. Saikouk, A. Gunasekaran and I. Badraoui, Artificial intelligence applications in supply chain: a descriptive bibliometric analysis and future research directions, Expert Systems with Applications 173 (2021), 114702. doi: 10.1016/j.eswa.2021.114702. [14] S. S. Kamble, A. Belhadi, A. Gunasekaran, L. Ganapathy and S. Verma, A large multi-group decision-making technique for prioritizing the big data-driven circular economy practices in the automobile component manufacturing industry, Technological Forecasting and Social Change 165 (2021), 120567. doi: 10.1016/j.techfore.2020.120567. [15] A. Belhadi, S. Kamble, C. J. C. Jabbour, A. Gunasekaran, N. O. Ndubisi and M. Venkatesh, Manufacturing and service supply chain resilience to the COVID-19 outbreak: lessons learned from the automobile and airline industries, Technological Forecasting and Social Change 163 (2021), 120447. doi: 10.1016/j.techfore.2020.120447. [16] A. Sassi, M. Ben Ali, H. Ifassiouen, K. Sahaf and S. Rifai, The Supply Chain 4.0 in Moroccan automotive companies: a state of art, Journal of Operations Management, Optimization and Decision Support 2(1) (2022), 49-56. doi: 10.34874/IMIST.PRSM/JOMODS-V2I1.32955. [17] M. Sharma, S. Kamble, V. Mani, R. Sehrawat, A. Belhadi and V. Sharma, Industry 4.0 adoption for sustainability in multi-tier manufacturing supply chain in emerging economies, Journal of Cleaner Production 281 (2021), 125013. doi: 10.1016/j.jclepro.2020.125013. [18] C. Anass, B. Amine, E. H. Ibtissam, I. Bouhaddou and S. Elfezazi, Industry 4.0 and lean six sigma: results from a pilot study, Advances in Integrated Design and Production, A. Saka, J.-Y. Choley, J. Louati, Z. Chalh, M. Barkallah, M. Alfidi, M. B. Amar, F. Chaari and M. Haddar, eds., Lecture Notes in Mechanical Engineering, Springer International Publishing, Cham, 2021, pp. 613-619. doi: 10.1007/978-3-030-62199-5_54. [19] M. Ghouat, A. Haddout and M. Benhadou, Impact of Industry 4.0 concept on the levers of lean manufacturing approach in manufacturing industries, IJAME 18(1) (2021), 8523-8530. doi: 10.15282/ijame.18.1.2021.11.0646. [20] M. Moufaddal, A. Benghabrit and I. Bouhaddou, A cyber-physical warehouse management system architecture in an Industry 4.0 context, Artificial Intelligence and Industrial Applications, T. Masrour, A. Cherrafi and I. El Hassani, eds., Advances in Intelligent Systems and Computing, Springer International Publishing, Cham, Vol. 1193, 2021, pp. 125-148. doi: 10.1007/978-3-030- 51186-9_9. [21] A. Es-Satty, R. Lemghari and C. Okar, Supply chain digitalization overview SCOR model implication, 2020 IEEE 13th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA), IEEE, Fez, Morocco, 2020, pp. 1-7. doi: 10.1109/LOGISTIQUA49782.2020.9353936. [22] E. Asadollahi-Yazdi, P. Couzon, N. Q. Nguyen, Y. Ouazene and F. Yalaoui, Industry 4.0: revolution or evolution? AJOR 10(06) (2020), 241-268. doi: 10.4236/ajor.2020.106014. [23] F. Rosin, P. Forget, S. Lamouri and R. Pellerin, Enhancing the decision-making process through Industry 4.0 technologies, Sustainability 14(1) (2022), 461. doi: 10.3390/su14010461. [24] A. Moeuf, R. Pellerin, S. Lamouri, S. Tamayo-Giraldo and R. Barbaray, The industrial management of SMEs in the era of Industry 4.0, International Journal of Production Research 56(3) (2018), 1118-1136. doi: 10.1080/00207543.2017.1372647. [25] G. A. Demetriou, Mobile robotics in education and research, Mobile Robots - Current Trends, Z. Gacovski, ed., InTech, 2011, pp. 27-48. doi: 10.5772/26295. [26] A. Sassi, M. B. Ali, M. Hadini, H. Ifassiouen and S. Rifai, The relation between Industry 4.0 and Supply Chain 4.0 and the impact of their implementation on companies’ performance: state of the art, International Journal of Innovation and Applied Studies 31(4) (2021), 9. [27] K. W. Chun, H. Kim and K. Lee, A study on research trends of technologies for Industry 4.0; 3D printing, artificial intelligence, big data, cloud computing, and internet of things, Advanced Multimedia and Ubiquitous Engineering, J. J. Park, V. Loia, K.-K. R. Choo and G. Yi, eds., Lecture Notes in Electrical Engineering, Singapore: Springer Singapore, Vol. 518, 2019, pp. 397-403. doi: 10.1007/978-981-13-1328-8_51. [28] A. Alharthi, V. Krotov and M. Bowman, Addressing barriers to big data, Business Horizons 60(3) (2017), 285-292. doi: 10.1016/j.bushor.2017.01.002. [29] M. J. Mazzei and D. Noble, Big data dreams: a framework for corporate strategy, Business Horizons 60(3) (2017), 405-414. doi: 10.1016/j.bushor.2017.01.010. [30] H. F. Cervone, Organizational considerations initiating a big data and analytics implementation, DLP 32(3) (2016), 137-141. doi: 10.1108/DLP-05-2016-0013. [31] W. A. Günther, M. H. Rezazade Mehrizi, M. Huysman and F. Feldberg, Debating big data: a literature review on realizing value from big data, Journal of Strategic Information Systems 26(3) (2017), 191-209. doi: 10.1016/j.jsis.2017.07.003. [32] J. J. Yoo, E. E. Günay, K. Park, S. Tahamtan and G. E. Okudan Kremer, An intelligent learning framework for Industry 4.0 through automated planning, Comput. Appl. Eng. Educ. 29(3) (2021), 624-640. doi: 10.1002/cae.22376. [33] SAE - Society of Automotive Engineers, SAE J4000 - Identification and measurement of best practice in implementation of lean operation, SAE - Society of Automotive Engineers, SAE Handbook - Volume 3 - On-highway Vehicles (Part II) and Off-road Machinery, Society of Automotive Engineers, Warrendale, PA, 2001. doi: 10.4271/J4000_202104. [34] W. C. Lucato, A. P. T. Pacchini, F. Facchini and G. Mummolo, Model to evaluate the Industry 4.0 readiness degree in industrial companies, IFAC-PapersOnLine 52(13) (2019), 1808-1813. doi: 10.1016/j.ifacol.2019.11.464. [35] ISO, ISO/IEC 15504-5, ISO, Geneva, 2004 - Part 5: An Exemplar Process Assessment Approach, ISO - International Organization for Standardization, 2004.
|