Keywords and phrases: response, physical activity, hypoxic hypoxia, tissue, oxygen, perturbation iteration method, numerical simulation.
Received: November 15, 2023; Revised: November 25, 2023; Accepted: March 2, 2024; Published: March 20, 2024
How to cite this article: Mahamat Saleh DAOUSSA HAGGAR and Jean Marie NTAGANDA, Response of physical activity to the dynamics of hypoxia tissue-vascular carbon dioxide exchange using perturbation iteration method, Far East Journal of Dynamical Systems 37(1) (2024), 51-68. https://doi.org/10.17654/0972111824003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. Cymennan and P. B. Rock, Medical Problems in High Mountain Environments. A Handbook for Medical Officers, USARIEM Technical Note TN 94-2, 1994. [2] G. Gutierrez, A Mathematical Model of Tissue-Blood Carbon Dioxide Exchange during Hypoxia, Am. J. Respir. Crit. Care Med. 169 (2004), 525-533. [3] J. J. Tyson and B. Novak, Regulation of the eukariotic cell-cycle: molecular antagonism, hysteresis, and irreversible transitions, J. Theor. Biol. 210 (2001), 249-263. [4] D. Gammack, H. M. Byrne and C. E. Lewis, Estimating the selective advantage of mutant p53 tumour cells to repeated rounds of hypoxia, Bull. Math. Biol. 63 (2001), 135-166. [5] J. A. Dempsey, H. V. Forster and D. M. Ainsworth, Regulation of hyperpnea, hyperventilation, and respiratory muscle recruitment during exercise, In: J. A. Dempsey, A. I. Pack, editors, Regulation of Breathing, New York, Marcel Dekker; 1995, p. 1065-1133. [6] B. Zhang, H. Ye and A. Yang, Mathematical modelling of interacting mechanisms for hypoxia mediated cell cycle commitment for mesenchymal stromal cells, BMC Syst. Biol. 12 (2018), 35. https://doi.org/10.1186/s12918-018-0560-3. [7] E. P. Chen, R. S. Song and X. Chen, Mathematical model of hypoxia and tumor signaling interplay reveals the importance of hypoxia and cell-to-cell variability in tumor growth inhibition, BMC Bioinformatics 20 (2019), 507. https://doi.org/10.1186/s12859-019-3098-5. [8] G. Fiandaca, M. Delitala and T. Lorenzi, A mathematical study of the influence of hypoxia and acidity on the evolutionary dynamics of cancer, Bull. Math. Biol. 83 (2021), 83. https://doi.org/10.1007/s11538-021-00914-3. [9] A. Ardaseva, R. A. Gatenby, A. R. A. Anderson, H. M. Byrne, P. K. Maini and T. Lorenzi, A mathematical dissection of the adaptation of cell populations to fluctuating oxygen levels, Bull. Math. Biol. 82(6) 81. [10] S. Timischl, A global model for the cardiovascular and respiratory system, Ph. D. Thesis, Karl-Franzens-Universitaet Graz, 1998. [11] S. Timischl, J. J. Batzel and F. Kappel, Modeling the human cardiovascular- respiratory control system: an optimal control application to the transition to non-REM sleep, Spezialforschungsbereich F-003 Technical Report 190, Karl- Franzens-Universitat, 2000. [12] Y. Aksoy and M. Pakdemirli, New perturbation-iteration solutions for Bratu-type equations, Computers and Mathematics with Applications 59(8) (2010), 2802-2808. [13] M. Pakdemirli, Y. Aksoy and H. Boyaci, A new perturbation-iteration approach for first order differential equations, Mathematical and Computational Applications 16(4) (2011), 890-899. [14] M. Pakdemirli, Review of the perturbation-iteration method, Mathematical and Computational Applications 18(3) (2013), 139-151. [15] Jean Marie Ntaganda and Benjamin MAMPASSI, Modelling blood partial pressures of the human cardiovascular/respiratory system, Applied Mathematics and Computation 187 (2007), 1100-1108.
|