Keywords and phrases: hierarchical poset code, hull, Griesmer bound, optimal code
Received: January 4, 2024; Accepted: February 21, 2024; Published: March 21, 2024
How to cite this article: Rohini Baliram More and Venkatrajam Marka, Optimal binary hierarchical poset code having hull dimension one, Advances and Applications in Discrete Mathematics 41(3) (2024), 239-259. http://dx.doi.org/10.17654/0974165824018
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] E. F. Assmus and J. D. Key, Affine and projective plane, Discrete Mathematics 83 (1990), 161-187. [2] N. Sendrier, Finding the permutation between equivalent linear codes: the support splitting algorithm, IEEE Transactions on Information Theory 46(4) (2000), 1193-1203. https://doi.org/10.1109/18.850662. [3] J. S. Leon, Computing automorphism groups of error-correcting codes, IEEE Transactions on Information Theory 28(3) (1982), 496-511. https://doi.org/10. 1109/TIT.1982.1056498. [4] N. Sendrier and G. Skersys, On the computation of the automorphism group of a linear code, IEEE International Symposium on Information Theory - Proceedings, 13 (2001). https://doi.org/10.1109/ISIT.2001.935876. [5] K. Guenda, S. Jitman and T. A. Gulliver, Constructions of good entanglement-assisted quantum error correcting codes, Designs, Codes, and Cryptography 86(1) (2018), 121-136. https://doi.org/10.1007/s10623-017-0330-z. [6] G. Luo, X. Cao and X. Chen, MDS codes with hulls of arbitrary dimensions and their quantum error correction, IEEE Transactions on Information Theory 65(5) (2019), 2944-2952. https://doi.org/10.1109/TIT.2018.2874953. [7] S. Thipworawimon and S. Jitman, Hulls of linear codes revisited with applications, Journal of Applied Mathematics and Computing 62(1-2) (2020), 325-340. https://doi.org/10.1007/s12190-019-01286-7. [8] L. Sok, MDS linear codes with one-dimensional hull, Cryptography and Communications 14(5) (2022), 949-971. https://doi.org/10.1007/s12095-022-00559-6. [9] W. Fang, F. W. Fu, L. Li and S. Zhu, Euclidean and Hermitian Hulls of MDS codes and their applications to EAQECCs, IEEE Transactions on Information Theory 66(6) (2020), 3527-3537. https://doi.org/10.1109/TIT.2019.2950245. [10] N. Gao, J. Li and S. Huang, Hermitian Hulls of constacyclic codes and their applications to quantum codes, International Journal of Theoretical Physics 61(57) (2022), 1-14. https://doi.org/10.1007/s10773-022-05012-1. [11] N. Sendrier, On the dimension of the hull, SIAM Journal on Discrete Mathematics 10(2) (1997), 282-293. https://doi.org/10.1137/S0895480195294027. [12] C. Li and P. Zeng, Constructions of linear codes with one-dimensional hull, IEEE Transactions on Information Theory 65(3) (2019), 1668-1676. https://doi.org/10. 1109/TIT.2018.2863693. [13] C. Carlet, C. Li and S. Mesnager, Linear codes with small hulls in semi-primitive case, Designs, Codes, and Cryptography 87(12) (2019), 3063-3075. https://doi.org/10.1007/s10623-019-00663-4. [14] L. Qian, X. Cao and S. Mesnager, Linear codes with one-dimensional hull associated with Gaussian sums, Cryptography and Communications 13(2) (2021), 225-243. https://doi.org/10.1007/s12095-020-00462-y. [15] Y. Wang and R. Tao, Constructions of linear codes with small hulls from association schemes, Advances in Mathematics of Communications 16(2) (2022), 349-364. https://doi.org/10.3934/amc.2020114. [16] L. Sok, On linear codes with one-dimensional Euclidean hull and their applications to EAQECCs, IEEE Transactions on Information Theory 68(7) (2022), 4329-4343. https://doi.org/10.1109/TIT.2022.3152580. arXiv:2101.06461. [17] H. Liu and X. Pan, Galois hulls of linear codes over finite fields, Designs, Codes, and Cryptography 88(2) (2020), 241-255. https://doi.org/10.1007/s10623-019-00681-2. arXiv:1809.08053. [18] X. Fang, R. Jin, J. Luo and W. Ma, New Galois Hulls of GRS codes and application to EAQECCs, Cryptography and Communications 14(1) (2022), 145-159. https://doi.org/10.1007/s12095-021-00525-8. [19] T. Mankean and S. Jitman, Optimal binary and ternary linear codes with hull dimension one, Journal of Applied Mathematics and Computing 64(1-2) (2020), 137-155. https://doi.org/10.1007/s12190-020-01348-1. [20] T. Mankean and S. Jitman, Constructions and bounds on quaternary linear codes with Hermitian hull dimension one, Arabian Journal of Mathematics 10(1) (2021), 175-184. https://doi.org/10.1007/s40065-020-00303-z. [21] R. A. Brualdi, J. S. Graves and K. M. Lawrence, Codes with a poset metric, Discrete Mathematics 147(1-3) (1995), 57-72. https://doi.org/10.1016/0012-365X(94)00228-B. [22] M. Firer, M. Muniz, B. Steinberg and G. Yin, Poset codes : partial orders, Metrics and Coding Theory 1 (2018), 1-127. https://doi.org/10.1007/978-3-319-93821-9. [23] R. A. Machado, J. A. Pinheiro and M. Firer, Characterization of metrics induced by hierarchical posets, IEEE Transactions on Information Theory 63(6) (2017), 3630-3640. https://doi.org/10.1109/TIT.2017.2691763. arXiv:1508.00914. [24] L. V. Felix and M. Firer, Canonical-systematic form for codes in hierarchical poset metrics, Advances in Mathematics of Communications 6(3) (2012), 315-328. https://doi.org/10.3934/amc.2012.6.315. [25] W. C. Huffman and V. Pless, Fundamental of Error-correcting Codes, Cambridge, University Press, 2003.
|