Keywords and phrases: isothermal mass transfer, liquid-phase sintering, dissolution-reprecipitation, diffusion coating, nanoparticles
Received: January 20, 2024; Accepted: February 24, 2024; Published: March 14, 2024
How to cite this article: E. G. Sokolov, A. V. Ozolin, D. A. Golius, E. E. Bobylev and S. A. Arefeva, Formation of controlled mass transfer in liquid metal solutions: a review, JP Journal of Heat and Mass Transfer 37(2) (2024), 217-233. http://dx.doi.org/10.17654/0973576324015
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] W. D. Kingery, Densification during sintering in the presence of a liquid phase I. Theory, Journal of Applied Physics 30 (1959), 301-306. [2] R. M. German, P. Suri and S. J. Park, Review: Liquid phase sintering, J. of Materials Sci. 44 (2009), 1-39. [3] S.-J. L. Kang, Liquid phase sintering, Z. Z. Fang ed., Woodhead Publishing Series in Metals and Surface Engineering: Sintering of Advanced Materials, Woodhead Publishing, 2010, p. 110-129. [4] A. Mortensen, Kinetics of densification by solution-reprecipitation, Acta Materialia 45 (1997), 749-758. [5] D. Müller, I. Konyashin, S. Farag, B. Ries, A. A. Zaitsev and P. A. Loginov, WC coarsening in cemented carbides during sintering, Part I: The influence of WC grain size and grain size distribution, International J. of Refractory Metals and Hard Materials 102 (2022), 105714. [6] Y. Iwasawa and Y. Abe, Melt jet-breakup and fragmentation phenomena in nuclear reactors: A review of experimental works and solidification effects, Progress in Nuclear Energy 108 (2018), 188-203. [7] X. Gong, M. P. Short, T. Auger, E. Charalampopoulou and K. Lambrinou, Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors, Progress in Materials Sci. 126 (2022), 143. [8] T. Gnanasekaran, Corrosion and mass transfer in liquid metal systems, T. Gnanasekaran, ed., Woodhead Publishing Series in Energy: Science and Technology of Liquid Metal Coolants in Nuclear Engineering, Woodhead Publishing, 2022, p. 385-435. [9] V. F. Shatinskiy, O. M. Zbozhnaya and G. G. Maksimovich, Obtaining of diffusion coatings in the medium of low-melting metals, Naukova Dumka, Kiev, 1976 (in Russian). [10] E. E. Bobylyov and E. G. Sokolov, Kinetics of the formation of diffusion titanium coatings on the surfaces of hard alloys during isothermal mass transfer of titanium in the Pb-Bi-Li melt, Letters on Materials 13 (2023), 335-340. [11] E. Pryakhin, A. Mikhailov and A. Sivenkov, Technological features of surface alloying of metal products with Cr-Ni complexes in the medium of low-melting metal melts, Chernye Metally 2 (2023), 58-65. [12] R. de Oro Calderon, C. Gierl-Mayer and H. Danninger, Fundamentals of sintering: Liquid phase sintering, F. G. Caballero, ed., Encyclopedia of Materials: Metals and Alloys, Elsevier, Oxford, 2022, p. 481-492. [13] N. D. Lesnik, Microstructure formation and evolution in composites during liquid-phase sintering, Powder Metallurgy and Metal Ceramics 51 (2013), 639-656. [14] V. A. Ivensen, Phenomenology of sintering and some questions of theory, Metallurgia, Moskow, 1985 (in Russian). [15] E. G. Sokolov, A. V. Ozolin and L. I. Svistun, Cobalt mass transfer through the liquid phase in sintering of Sn-Cu-Co and Sn-Cu-Co-W powder materials, JP Journal of Heat and Mass Transfer 16 (2019), 297-305. [16] А. Kumar, А. Gokhale, S. Ghosh and S. Aravindan, Effect of nano-sized sintering additives on microstructure and mechanical properties of Si3N4 ceramics, Materials Sci. and Engineering 750 (2019), 132-140. [17] L. Yang, W. Yinghong, X. Dezhi, T. Kaiwei and H. Chao, Al2O3 coating for densification of SiC ceramics and sintering kinetics, Surface and Coatings Technol. 374 (2019), 603-609. [18] D. Bregiroux and J. Cedelle, Spark plasma sintering of nanostructured ZnS ceramics: Grain growth control and improved hardness, Materials Science and Engineering 827 (2021), 142064. [19] K. Jeong, J. Tatami, M. Iijima and T. Nishimura, Spark plasma sintering of silicon nitride using nanocomposite particles, Advanced Powder Technology 28 (2017), 37-42. [20] J. G. Fisher and S.-J. L. Kang, Strategies and practices for suppressing abnormal grain growth during liquid phase sintering, J. Am. Ceram. Soc. 102 (2019), 717-735. [21] P. A. Vityaz, I. V. Zhornik, S. A. Kovaleva and V. A. Kukarenko, Changes in the structure and properties of sintered alloys under the influence of nanoscale carbon additives, Powder Metallurgy аnd Functional Coatings 4 (2014), 12-18. [22] A. S. de Brasunas, Liquid metal corrosion, Corrosion 9 (1953), 78-84. [23] A. K. Covington and A. A. Woolf, Isothermal mass transfer in liquid metals, J. of Nuclear Energy, Part B. Reactor Technology 1 (1959), 35. [24] V. I. Nikitin, Physico-chemical phenomena associated with the action of liquid metals on solids, Atomizdat, Moscow, 1967 (in Russian). [25] T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, Binary alloy phase diagrams, 2nd ed., ASM International, Materials Park, OH, USA, 1990. [26] A. G. Sokolov and E. E. Bobylyov, Features and regularities in formation of diffusion nickel-copper coatings on steels in the medium of low-melting liquid metal solutions, CIS Iron and Steel Review 23 (2022), 56-60. [27] E. E. Bobylyov and A. G. Sokolov, Тhe element-phase composition and properties of the surface layers of carbide-tipped tools made of TK and WC-Co alloys, Letters on Materials 7 (2017), 222-228. [28] M. A. Skotnikova, V. P. Artemyev, S. A. Shasherina et al., Tribotechnical properties of nanostructured coppernickel coatings, A. Evgrafov, ed., Advances in Mechanical Engineering, Lecture Notes in Mechanical Engineering, Springer, Cham, 2019, pp. 61-71. [29] G. Müller, G. Schumacher and F. Zimmermann, Investigation on oxygen controlled liquid lead corrosion of surface treated steels, Journal of Nuclear Materials 278 (2000), 85-95. [30] Hao Wang, Jun Xiao, Linjiang Chai et al., Insights into the corrosion mechanism of a 12Cr F/M steel in oxygen-saturated liquid LBE, Corrosion Science 225 (2023), 111602. [31] G. Ilinčev, Research results on the corrosion effects of liquid heavy metals Pb, Bi and Pb-Bi on structural materials with and without corrosion inhibitors, Nuclear Engineering and Design 217 (2002), 167-177. [32] R. Casati and M. Vedani, Metal matrix composites reinforced by nano-particles – a review, Metals 4 (2014), 65-83. [33] P. A. Loginov, D. A. Sidorenko, E. A. Levashov et al., Hybrid metallic nanocomposites for extra wear-resistant diamond machining tools, Intern. J. Refr. Met. Hard Mater. 71 (2018), 36-44. [34] L. He, Y. Sun, C. Zhang, J. Wu and Q. Meng, Effect of the addition of nanosized Y2O3 on the mechanical properties of WC-bronze composites, Springer Proceedings in Physics, 2009, pp. 655-663. [35] S. Lurie, D. Volkov-Bogorodskiy, Y. Solyaev and R. Rizahanov, Multiscale modelling of aluminium-based metal-matrix composites with oxide nanoinclusions, Computational Materials Sci. 16 (2016), 62-73. [36] X. Zhou, D. Wang and X. Li, Mechanism for TiN refinement and resultant heterogeneous nucleation of -Fe in magnesium-rare earth-treated ultrapure ferritic stainless steel, Materials Characterization 205 (2023), 23. [37] E. G. Sokolov and A. V. Ozolin, The influence of temperature on interaction of Sn-Cu-Co-W binders with diamond in sintering the diamond-containing composite materials, Materials Today: Proceedings 5 (2018), 26038-26041. [38] E. Sokolov, A. Ozolin and D. Golius, Structure formation of diamond-containing coatings during sintering of specially-shaped grinding wheels, Coatings 12 (2022), 333. [39] L. Vitos, A. V. Ruban, H. L. Skriver and J. Kollár, The surface energy of metals, Surface Science 411 (1998), 186-202. [40] RSF: Information about project, supported by Russian Science Foundation, Available online: https://rscf.ru/en/project/23-29-00706/
|