Keywords and phrases: compressed earth blocks, cement, thermal conductivity, compressive strength, flexural strength, date palm fibers
Received: January 8, 2024; Accepted: February 16, 2024; Published: March 14, 2024
How to cite this article: M. Laatar, S. Nasla, H. Lbakhkhouch, M. Kheltent, K. Gueraoui and M. Cherraj, Analyzing effects of different dosages of cement and date palm fiber lengths on the mechanical and thermal characteristics of compressed earth blocks, JP Journal of Heat and Mass Transfer 37(2) (2024), 201-216. http://dx.doi.org/10.17654/0973576324014
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] A. Guettala, H. Houari, B. Mezghiche and R. Chebili, Durability of lime stabilized earth blocks, 2002. https://doi.org/10.1680/scc.31777.0064. [2] B. Taallah, Etude du comportement physico-mécanique du bloc de terre comprimée avec fibres, Université Mohamed Khider, Biskra, 2014. [3] M. F. Hochella, Jr., Nanoscience and technology: the next revolution in the Earth sciences, Earth and Planetary Science Letters 203 (2002), 593-605. [4] Y. Jamil et al., The influence of compaction stress and alfa fiber content on the physico-chemical characterization of compressed earth blocks (CEB), JP Journal of Heat and Mass Transfer 24(2) (2021), 265-282. [5] Y. El Maatoufi et al., Characterization and valorization of clay deposits in the region of El Gharb (Machraa Belksiri) in Morocco, for building material industry use, JP Journal of Heat and Mass Transfer 25 (2022), 61-72. [6] S. Nasla et al., An experimental study of the effect of pine needles and straw fibers on the mechanical behavior and thermal conductivity of adobe earth blocks with chemical analysis, JP Journal of Heat and Mass Transfer 23(1) (2021), 35-56. [7] M. Kheltent et al., Influence of the size and amount of cork particles and lime on the mechanical and thermal characterizations of soil-based compressed earth blocks from Marrakech-Safi region in Morocco, JP Journal of Heat and Mass Transfer 36 (2023), 19-36. [8] A. Filali Adib et al., The physico-chemical properties of concretes based on local sands in the Marrakech-Safi region in Morocco, JP Journal of Heat and Mass Transfer 30 (2022), 33-43. [9] H. Lbakhkhouch et al., Characterization of mechanical and thermal performances of compressed earth blocks used in the construction of soil from Shoul in Morocco, reinforced with coconut fibers, JP Journal of Heat and Mass Transfer 36 (2023), 143-157. [10] A. Bouchkarem et al., Evaluation of the influence of different dosages of cement on the thermal conductivity with different thermal parameters of CEBs, JP Journal of Heat and Mass Transfer 29 (2022), 163-178. [11] XP P94-041: Reconnaissance et essais - Identification granulométrique – Méthode de tamisage par voie humide, AFNOR, 1995. [12] NF P94-057: Reconnaissance et essais - Analyse granulométrique des sols - Méthode par sedimentation, AFNOR, 1992. [13] H. Houben, V. Rigassi and P. Gamier, Blocs de terre comprimée équipements de production, Manuel, 2nd ed., CDI & CRATerre, Bruxelles, 1996. [14] M. Laatar et al., Effect of date palm fibers and lime ratio contents on thermal and mechanical properties of compressed earth blocks, JP Journal of Heat and Mass Transfer 36 (2023), 71-88. [15] A. Kriker, G. Debicki, A. Bali, M. M. Khenfer and M. Chabannet, Mechanical properties of date palm fibres and reinforced date palm fibre concrete in hot-dry climate, Cem. Concr. Compos. 27(5) (2005), 554-564. [16] Peter Donkor and Esther Obonyo, Earthen construction materials: assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers, Materials and Design 83 (2015), 813-819. [17] D. Ciancio and J. Gibbings, Experimental investigation on the compressive strength of cored and molded cement-stabilized rammed earth samples, Constr. Build. Mater. 28 (2012), 294-304. [18] Q.-B. Bui, J. C. Morel, S. Hans and P. Walker, Effects of moisture content on the mechanical characteristics of rammed earth, Constr. Build. Mater. 54 (2014), 163-169. [19] M. Ben Mansour, A. Jelidi, A. S. Cherif and S. Ben Jabrallah, Optimizing thermal and mechanical performance of compressed earth blocks (CEB), Constr. Build. Mater. 104 (2016), 44-51. [20] A. Kriker, G. Debicki, A. Bali, M. M. Khenfer and M. Chabannet, Mechanical properties of date palm fibres and reinforced date palm fibre concrete in hot-dry climate, Cem. Concr. Compos. 27(5) (2005), 554-564. [21] Fadi Althoey and Ibrahim Y. Hakeem, Development of green and sustainable ultra-high-performance concrete composite reinforced with date palm fibers, IOP Conference Series: Earth and Environmental Science, IOP Publishing, Vol. 1026, No. 1, 2022. [22] M. H. Akeed, S. Qaidi, R. H. Faraj, A. S. Mohammed, W. Emad, B. A. Tayeh and A. R. G. Azevedo, Ultra-high performance fiber reinforced concrete. Part I: Developments, principles, raw materials, Case Stud. Constr. Mater. 17 (2022), e01290. [23] W. H. Kwan, M. Ramli and C. B. Cheah, Flexural strength and impact resistance study of fibre reinforced concrete in simulated aggressive environment, Constr. Build. Mater. 63 (2014), 62-71. [24] Y. Millogo, J. C. Morel, J. E. Aubert and K. Ghavami, Experimental analysis of pressed adobe blocks reinforced with hibiscus cannabinus fibers, Constr. Build. Mater. 52 (2014), 71-78. [25] N. A. El-Hakim, A. A. El-Hady, M. F. El-Din and M. A. El-Banna, Influence of the kenaf fiber length on the mechanical and thermal properties of compressed earth blocks (CEB), Constr. Build. Mater. 205 (2019), 155-163.
|