Keywords and phrases: thermal radiation, viscous dissipation, melting heat transfer, magnetic field parameter, viscosity parameter
Received: December 6, 2023; Accepted: February 6, 2024; Published: March 14, 2024
How to cite this article: Riken Kaye and Sahin Ahmed, Melting heat transfer and variable viscosity of a hydromagnetic flow over a stretching/shrinking sheet: numerical approach, JP Journal of Heat and Mass Transfer 37(2) (2024), 185-199. http://dx.doi.org/10.17654/0973576324013
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] B. C. Sakiadis, Boundary-layer behavior on a continuous solid surface: II-The boundary layer on a continuous flat surface, AIChE Journal 7 (1961), 221-225. [2] K. R. Rajagopal, T. Y. Na and A. S. Gupta, Flow of a viscoelastic fluid over a stretching sheet, Rheologica Acta 23 (1984), 213-215. [3] A. K. Rauta and S. K. Mishra, Heat transfer of a dusty fluid over a stretching sheet with internal heat generation/absorption, International Journal of Engineering and Technology 3(12) (2014), 28-41. [4] A. Ishak, Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition, Appl. Math. Comput. 217 (2010), 837-842. [5] M. E. Ali, The effect of variable viscosity on mixed convection heat transfer along a vertical moving surface, International Journal of Thermal Sciences 45 (2006), 60-69. [6] S. Yao, T. Fang and Y. Zhong, Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 752-760. [7] L. J. Crane, Flow past a stretching plate, J. Appl. Math. Phys. 21 (1970), 645-647. [8] S. M. M. El-Kabeir, Radiative effects on forced convection flows in micropolar fluids with variable viscosity, Can. J. Phys. 82 (2004), 151-165. [9] B. Das and S. Ahmed, Numerical modeling of bioconvection and heat transfer analysis of Prandtl nanofluid in an inclined stretching sheet: a finite difference scheme, Numerical Heat Transfer, Part A: Applications (2023), 1-21. [10] M. A. Hussain and S. Ahmed, Dual solution of heat transfer in hydromagnetic micropolar fluid flow over a stretching sheet in a porous media: a numerical approach, Heat Transfer 52(2) (2023), 1215-1231. [11] L. F. Shampine, J. Kierzenka and M. W. Reichelt, Solving boundary value problems for ordinary differential equations in MATLAB with BVP4C, The Math Works. Inc. Tutorial, 2000. [12] J. Kierzenka, M. W. Reichelt and L. F. Shampine, Solving boundary value problems for ordinary differential equations in MATLAB with BVP4C, The Math Works Inc., 2002. [13] A. Ayub, Z. Sabir, G. C. Altamirano, R. Sadat and M. R. Ali, Characteristics of melting heat transport of blood with time-dependent cross-nanofluid model using Keller-Box and BVP4C method, Engineering with Computers 38(4) (2022), 3705-3719. [14] W. Kejing and W. R. W. Abdullahb, Solving mixed convection boundary layer flow of viscoelastic nanofluid past over a sphere using MATLAB with BVP4C solver, Proc. Sci. Math. 3 (2021), 192-202. [15] S. Hazarika and S. Ahmed, Theoretical investigation of viscosity and thermal conductivity of a gas along a non-isothermal vertical surface in porous environment with dissipative heat: numerical technique, J. Appl. Comput. Mech. 8(4) (2022), 1236-1245. [16] S. Li, V. Puneeth, A. M. Saeed, A. Singhal, F. A. M. Al-Yarimi and M. I. Khan, Analysis of the Thomson and Troian velocity slip for the flow of ternary nanofluid past a stretching sheet, Scientific Reports 13(1) (2023), 2340. [17] K. Rafique, Z. Mahmood, H. Alqahtani and S. M. Eldin, Various nanoparticle shapes and quadratic velocity impacts on entropy generation and MHD flow over a stretching sheet with joule heating, Alexandria Engineering Journal 71 (2023), 147-159. [18] B. M. Makhdoum, Z. Mahmood, B. M. Fadhl and M. Aldhabani, Significance of entropy generation and nanoparticle aggregation on stagnation point flow of nanofluid over stretching sheet with inclined Lorentz force, Arabian Journal of Chemistry 16(6) (2023), 104787. [19] C. A. Nandhini, S. Jothimani and A. J. Chamkha, Combined effect of radiation absorption and exponential parameter on chemically reactive Casson fluid over an exponentially stretching sheet, Partial Differential Equations in Applied Mathematics 8 (2023), 100534. [20] K. Zheng, S. I. Shah, M. Naveed Khan, E. Tag-Eldin, M. Yasir and A. M. Galal, Numerical simulation of melting heat transfer towards the stagnation point region over a permeable shrinking surface, Scientia Iranica 30(3) (2023), 1039-1048. [21] K. Hiemenz, Die Grenzschicht an einem in den Gleichformigen Flussigkcitsstrom eingetauchten garden Kreiszylinder, Dinglers Polytech. J. 326 (1911), 321-324. [22] C. Y. Wang, Stagnation flow towards a shrinking sheet, Internat. J. Non-Linear Mech. 43 (2008), 377. [23] A. Kimiaeifar, G. H. Bagheri, M. Rahimpour and G. H. Bagheri, An analytical solution for the Marangoni mixed convection boundary layer flow, Proc. Inst. Mech. Eng. 223 (2009), 133.
|