Keywords and phrases: Burgers equation, Cole-Hopf transformation, SBA method.
Received: January 12, 2024; Accepted: February 27, 2024; Published: March 9, 2024
How to cite this article: Gérard ZONGO, Ousséni SO and Geneviève BARRO, A numerical method to solve the viscosity problem of the Burgers equation, Advances in Differential Equations and Control Processes 31(2) (2024), 153-164. http://dx.doi.org/10.17654/0974324324008
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] B. Abbo, Nouvel algorithm numérique de résolution des équations différentielles ordinaries (EDO) et des équations aux dérivées partielles (EDP) non linéaires, Thèse de Doctorat unique, Université de Ouagadougou, 2007. [2] B. Abbo, B. Some, O. So and G. Barro, A new numerical algorithm for solving nonlinear partial differential equations with initial and boundary conditions, Far East J. Appl. Math. 28(1) (2007), 37-52. [3] M. Ablowitch and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, 1981. [4] G. Adomian, A review the decomposition method in applied mathematics, J. Math. Anal. Appl. 135 (1988), 501-544. [5] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Pub., 1994. [6] R. K. Dodd et al., Solution and Nonlinear Wave Equations, Academic Press, New York, 1982. [7] J.-D. Fournier and U. Frisch, L’équation de burgers déterministe et statistique, Journal de Mécanique Théorique et Appliquée 2(5) (1983), 699-750. [8] A. Guesima and N. Daili, Approche numérique de la solution entropique de l’équation d’évolution de bürgers par la méthode des lignes, Gen. Math. 17(2) (2009), 99-111. [9] Ji-Huan He, A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci. Numer. Simul. 2(4) (1997), 230-235. [10] Ji-Huan He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Meth. Appl. Mech. Eng. 167 (1998), 57-68. [11] Ji-Huan He, Variational iteration method a kind of nonlinear analytical technique: some examples, Int. J. Non-Linear Mech. 34(4) (1999), 699-708. [12] Mariana Malard, Sine-Gordon model: renormalization group solution and applications, Brazilian Journal of Physics 43(3) (2013), 182-198. [13] Igor Podlubný, Fractional Differential Equations, Academic Press, United States, 1998. [14] H. D. Wahlquist and F. B. Estabrook, Bäcklund transformation for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett. 31 (1973), 1386-1390. [15] A. M. Wazwaz, A reliable technique for solving linear and nonlinear Schrodinger equations by Adomian decomposition method, BIMAS 29(2) (2001), 125-134. [16] Hans J. Wospakrik and Freddy P. Zen, Inhomogeneous Burgers equation and the Feynman-Kac path integral, 1998. https://doi.org/10.48550/arXiv.solv-int/9812014. [17] Gérard Zongo, Ousséni So, Geneviève Barro, Youssouf Paré and Blaise Somé, A comparison of Adomian’s method and SBA method on the nonlinear Schrödinger’s equation, Far East J. Dyn. Syst. 29(4) (2017), 149-161.
|