Keywords and phrases: anisotropic Navier-Stokes equations, aspect ratio limit, compressible primitive equations
Received: November 19, 2023; Accepted: January 25, 2024; Published: February 28, 2024
How to cite this article: Jules Ouya and Arouna Ouedraogo, On 3D compressible primitive equations approximation of anisotropic Navier-Stokes equations: rigorous justification, Advances in Differential Equations and Control Processes 31(1) (2024), 109-151. http://dx.doi.org/10.17654/0974324324007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] R. Andrášik, V. Mácha and R. Vodák, Relative energy inequality and weak-strong uniqueness for an isothermal non-Newtonian compressible fluid, Glasnik Matematitički 58(78) (2023), 85-99. [2] P. Azérad and F. Guillén, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, SIAM J. Math. Anal. 33 (2001), 847-859. [3] P. Bella, E. Feireisl and A. Novotný, Dimension reduction for compressible viscous fluids, Acta Appl. Math. 134 (2014), 111-121. [4] D. Bresch, F. Guillén-González, N. Masmoudi and M. A. Rodríguez-Bellido, On the uniqueness of weak solutions of the two-dimensional primitive equations, Differential Integral Equations 16 (2003), 77-94. [5] D. Bresch, A. Kazhikhov and J. Lemoine, On the two-dimensional hydrostatic Navier-Stokes equations, SIAM J. Math. Anal. 36 (2004/05), 796-814. [6] D. Bresch, J. Lemoine and J. Simon, A vertical diffusion model for lakes, SIAM J. Math. Anal. 30 (1999), 603-622. [7] K. Bryan, A numerical method for the study of the circulation of the world ocean, J. Comp. Phys. 4 (1969), 347-376. [8] C. S. Cao, J. K. Li and E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Ration. Mech. Anal. 214 (2014), 35-76. [9] C. S. Cao, J. K. Li and E. S. Titi, Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion, Comm. Pure Appl. Math. 69 (2016), 1492-1531. [10] C. S. Cao, J. K. Li and E. S. Titi, Strong solutions to the 3D primitive equations with only horizontal dissipation: near H1 initial data, J. Funct. Anal. 272 (2017), 4606-4641. [11] C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal. 70 (1979), 167-179. [12] M. Ersoy, T. Ngom and M. Sy, Compressible primitive equations: formal derivation and stability of weak solutions, Nonlinearity 24 (2011), 79-96. [13] M. Ersoy and T. Ngom, Existence of a global weak solution to one model of compressible primitive equations, C. R. Math. Acad. Sci. Paris 350 (2012), 379 382. [14] M. Esteves, X. Faucher, S. Galle and M. Vauclin, Overland flow and infiltration modeling for small plots during unsteady rain: numerical results versus observed values, J. Hydrol. 228 (2000), 265-282. [15] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004. [16] E. Feireisl, J. B. Jin and A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech. 14 (2012), 717-730. [17] E. Feireisl and A. Novotný, Singular limits in thermodynamics of viscous fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser, Basel, 2009. [18] C. Gandolfi and F. Savi, A mathematical model for the coupled simulation of surface runoff and infiltration, Journal of Agricultural Engineering Research 75 (2000), 49-55. [19] H. Gao, Š. Nečasová and T. Tang, On the hydrostatic approximation of compressible anisotropic Navier-Stokes equations - rigorous justification, J. Math. Fluid. Mech. 24 (2022), 86. [20] B. V. Gatapov and A. V. Kazhikhov, Existence of a global solution of a model problem of atmospheric dynamics, Siberian Math. J. 46 (2005), 805-812. [21] P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech. 13 (2011), 137-146. [22] B. L. Guo and D. W. Huang, Existence of the universal attractor for the 3-D viscous primitive equations of large-scale moist atmosphere, J. Differential Equations 251 (2011), 457-491. [23] B. L. Guo, D. W. Huang and W. Wang, Diffusion limit of 3D primitive equations of the large-scale ocean under fast oscillating random force, J. Differential Equations 259 (2015), 2388-2407. [24] O. Kreml, Š. Nečasová and T. Piasecki, Local existence of strong solutions and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains, Proc. Roy. Soc. Edinburgh Sect. A 150(5) (2020), 2255-2300. DOI: 10.1017/prm.2018.165. [25] N. Ju, The global attractor for the solutions to the 3d viscous primitive equations, Discrete Contin. Dyn. Syst. 17 (2007), 159-179. [26] J. K. Li and E. S. Titi, The primitive equations as the small aspect ratio limit of the Navier-Stokes equations: rigorous justification of the hydrostatic approximation, J. Math. Pures Appl. 124 (2019), 30-58. [27] J. L. Lions, R. Temam and S. H. Wang, On the equations of the large-scale ocean, Nonlinearity 5 (1992), 1007-1053. [28] J. L. Lions, R. Temam and S. H. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity 5 (1992), 237-288. [29] J. L. Lions, R. Temam and S. H. Wang, Mathematical theory for the coupled atmosphere-ocean models, (CAO III), J. Math. Pures Appl. (9) 74 (1995), 105-163. [30] J. L. Lions, R. Temam and S. H. Wang, On mathematical problems for the primitive equations of the ocean: the mesoscale midlatitude case, Nonlinear Anal. 40 (2000), 439-482. [31] X. Liu and E. S. Titi, Local well-posedness of strong solutions to the three- dimensional compressible primitive equations, Arch. Rational Mech. Anal. 241 (2021), 729-764. [32] X. Liu and E. S. Titi, Global existence of weak solutions to the compressible primitive equations of atmospheric dynamics with degenerate viscosities, SIAM J. Math. Anal. 51 (2019), 1913-1964. [33] X. Liu and E. S. Titi, Zero Mach number limit of the compressible primitive equations Part I: well-prepared initial data, Arch. Ration. Mech. Anal. 238 (2020), 705-747. [34] D. Maltese and A. Novotný, Compressible Navier-Stokes equations on thin domains, J. Math. Fluid Mech. 16 (2014), 571-594. [35] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13 (1959), 115-162. [36] J. Pedlosky, Geophysical Fluid Dynamics, 2nd ed., Springer-Verlag, New York, 1987. [37] T. Tang and H. J. Gao, On the stability of weak solution for compressible primitive equations, Acta Appl. Math. 140 (2015), 133-145. [38] R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics, Handbook of Mathematical Fluid Dynamics, 2004. [39] F. C. Wang, C. S. Dou and Q. S. Jiu, Global weak solutions to 3D compressible primitive equations with density dependent viscosity, J. Math. Phys. 61(2) (2020), 021507, 33 pp. [40] S. H. Wang and P. Yang, Remarks on the Rayleigh-Benard convection on spherical shells, J. Math. Fluid Mech. 15 (2013), 537-552.
|