Keywords and phrases: independent set, neighborhood system, independent neighborhood polynomial.
Received: December 3, 2023; Accepted: January 16, 2024; Published: February 19, 2024
How to cite this article: Bayah J. Amiruddin-Rajik, Ruhilmina A. Sappayani, Rosalio G. Artes Jr., Bhusra I. Junio and Hashirin H. Moh. Jiripa, Independent neighborhood polynomial of a graph, Advances and Applications in Discrete Mathematics 41(2) (2024), 149-156. http://dx.doi.org/10.17654/0974165824010
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] R. A. Anunciado and R. G. Artes, Jr., Connected dominating independent neighborhood polynomial of graphs, Advances and Applications in Discrete Mathematics 39(1) (2023), 73-80. https://doi.org/10.17654/0974165823036. [2] A. L. Arriesgado and R. G. Artes, Jr., Convex independent common neighborhood polynomial of a graph, Advances and Applications in Discrete Mathematics 38(2) (2023), 145-158. https://doi.org/10.17654/0974165823025. [3] A. L. Arriesgado, S. C. Abdurasid and R. G. Artes, Jr., Connected common neighborhood systems of cliques in a graph: a polynomial representation, Advances and Applications in Discrete Mathematics 38(1) (2023), 69-81. https://doi.org/10.17654/0974165823019. [4] A. L. Arriesgado, J. I. C. Salim and R. G. Artes, Jr., Clique connected common neighborhood polynomial of the join of graphs, Int. J. Math. Comput. Sci. 18(4) (2023), 655-659. [5] R. G. Artes, Jr., N. H. R. Mohammad, A. A. Laja and N. H. M. Hassan, From graphs to polynomial rings: star polynomial representation of graphs, Advances and Applications in Discrete Mathematics 37 (2023), 67-76. https://doi.org/10.17654/0974165823012. [6] R. G. Artes, Jr., N. H. R. Mohammad, Z. H. Dael and H. B. Copel, Star polynomial of the corona of graphs, Advances and Applications in Discrete Mathematics 39(1) (2023), 81-87. https://doi.org/10.17654/0974165823037. [7] R. G. Artes, Jr., A. J. U. Abubakar and S. U. Kamdon, Polynomial representations of the biclique neighborhood of graphs, Advances and Applications in Discrete Mathematics 37 (2023), 37-45. http://dx.doi.org/10.17654/0974165823010. [8] R. G. Artes Jr., R. H. Moh. Jiripa and J. I. C. Salim, Connected total dominating neighborhood polynomial of graphs, Advances and Applications in Discrete Mathematics 39(2) (2023), 145-154. http://dx.doi.org/10.17654/0974165823042. [9] R. G. Artes, Jr. and J. B. Nalzaro, Combinatorial approach for counting geodetic sets with subdominating neighborhoods systems, Advances and Applications in Discrete Mathematics 38(2) (2023), 179-189. https://doi.org/10.17654/0974165823027. [10] J. Ellis-Monaghan and J. Merino, Graph Polynomials and their Applications II: Interrelations and Interpretations, Birkhauser, Boston, 2011. [11] F. Harary, Graph Theory, CRC Press, Boca Raton, 2018. [12] C. Hoede and X. Li, Clique polynomials and independent set polynomials of graphs, Discrete Math. 125 (1994), 219-228. [13] R. E. Madalim, R. G. Eballe, A. H. Arajaini and R. G. Artes, Jr., Induced cycle polynomial of a graph, Advances and Applications in Discrete Mathematics 38(1) (2023), 83-94. https://doi.org/10.17654/0974165823020. [14] Rosalio G. Artes, Jr., Mercedita A. Langamin and Almira B. Calib-og, Clique common neighborhood polynomial of graphs, Advances and Applications in Discrete Mathematics 35 (2022), 77-85. https://doi.org/10.17654/0974165822053. [15] L. S. Laja and R. G. Artes Jr., Zeros of convex subgraph polynomials, Appl. Math. Sci. 8(59) (2014), 2917-2923. http://dx.doi.org/10.12988/ams.2014.44285. [16] L. S. Laja and R. G. Artes Jr., Convex subgraph polynomials of the join and the composition of graphs, International Journal of Mathematical Analysis 10(11) (2016), 515-529. http://dx.doi.org/10.12988/ijma.2016.512296. [17] C. A. Villarta, R. G. Eballe and R. G. Artes Jr., Induced path polynomial of graphs, Advances and Applications in Discrete Mathematics 39(2) (2023), 183-190. https://doi.org/10.17654/0974165823045.
|