Keywords and phrases: confidence intervals, average coverage probability, average expected length.
Received: October 4, 2023; Accepted: November 9, 2023; Published: December 30, 2023
How to cite this article: David A. Sotres-Ramos, Martha E. Ramírez-Guzmán, Gustavo Mora-Aguilera and Ollin T. Rodríguez-Bravo, Comparison of confidence intervals for the Bernoulli parameter, Far East Journal of Mathematical Education 26(1) (2024), 1-13. http://dx.doi.org/10.17654/0973563124001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. Agresti and B. A. Coull, Approximate is better than “exact” for interval estimation of binomial proportions, Amer. Statist. 52 (1998), 119-126. [2] Colin R. Blyth and Harold A. Still, Binomial confidence intervals, J. Amer. Statist. Assoc. 78 (1983), 108-116. [3] L. D. Brown, T. T. Cai and A. DasGupta, Confidence intervals on for a binomial proportion and asymptotic expansions, Ann. Statist. 30(1) (2002), 160-201. [4] L. D. Brown, T. T. Cai and A. DasGupta, Interval estimation for a binomial proportion, Statist. Sci. 16(2) (2001), 101-133. [5] P. Cook, Coverage versus confidence, The Mathematica Journal 23 (2021), 1-16. [6] C. J. Clopper and E. S. Pearson, The use of confidence or fiducial limits illustrated in the case of the binomial, Biometrika 26(4) (1934), 404-413. [7] S. Jin, M. Thulin and R. Larsson, Approximate Bayesianity of frequentist confidence intervals for a binomial proportion, Amer. Statist. 71 (2017), 106-112. [8] A. Lott and J. Reiter, Wilson confidence intervals for binomial proportions with multiple imputation for missing data, Amer. Statist. 74(2) (2018), 109-115. [9] A. M. Mood, F. A. Graybill and D. C. Boes, Introduction to the Theory of Statistics, 3rd ed., McGraw-Hill, Tokyo, 1974. [10] J. B. Santos, F. J. O. Irizo and J. A. C. Ruiz, Una explicación del comportamiento errático del intervalo de Wald en el modelo binomial, Anales de economía aplicada, Asociación Española de Economía Aplicada, ASEPELT 7 (2007), 130-148. [11] M. Schilling and J. Doi, A coverage probability approach to finding an optimal binomial confidence procedure, Amer. Statist. 68 (2014), 133-145. [12] M. Spiegel and L. J. Stephens, Estadística, 2 da edición, EEUU, McGraw-Hill, 1991. [13] J. M. Utts and R. F. Heckard, Mind on Statistics, 6th ed., Cengage, Boston, MA, U.S.A., 2022. [14] P. W. Vos and S. Hudson, Evaluation criteria for discrete confidence intervals: beyond coverage and length, Amer. Statist. 59 (2005), 137-142. [15] P. W. Vos and S. Hudson, Problems with binomial two-sided tests and the associated confidence intervals, Aust. N. Z. J. Stat. 50 (2008), 81-89. [16] W. Wang, A “Paradox” in confidence interval construction using sufficient statistics, Amer. Statist. 72 (2018), 315-320. [17] E. B. Wilson, Probable inference, the law of succession, and statistical inference, J. Amer. Statist. Assoc. 22(158) (1927), 209-212.
|