Keywords and phrases: triply singular, fourth order, nonlinear functional differential model, collocation method.
Received: December 10, 2023; Accepted: January 3, 2024; Published: February 19, 2024
How to cite this article: A. H. Tedjani, Mahmoud M. Abdelwahab and M. A. Abdelkawy, An efficient scheme to solve fourth order nonlinear triply singular functional differential equation, Advances in Differential Equations and Control Processes 31(1) (2024), 27-42. http://dx.doi.org/10.17654/0974324324003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] H. T. Banks and W. C. Thompson, Random delay differential equations and inverse problems for aggregate data problems, Eurasian Journal of Mathematical and Computer Applications 6(4) (2018), 4-16. [2] M. Dehghan and F. Shakeri, The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics, Phys. Scripta 78(6) (2008), 065004. [3] X. Liu and G. Ballinger, Boundedness for impulsive delay differential equations and applications to population growth models, Nonlinear Anal. 53(7-8) (2003), 1041-1062. [4] P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci. 179(1) (2002), 73 94. [5] M. Villasana and A. Radunskaya, A delay differential equation model for tumor growth, J. Math. Biol. 47(3) (2003), 270-294. [6] M. R. Roussel, The use of delay differential equations in chemical kinetics, The Journal of Physical Chemistry 100(20) (1996), 8323-8330. [7] S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, Journal of Biological Dynamics 2(2) (2008), 140-153. [8] D. Bratsun, D. Volfson, L. S. Tsimring and J. Hasty, Delay-induced stochastic oscillations in gene regulation, Proceedings of the National Academy of Sciences 102(41) (2005), 14593-14598. [9] G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math. 70(7) (2010), 2693-2708. [10] A. M. Wazwaz, A new method for solving singular initial value problems in the second-order ordinary differential equations, Appl. Math. Comput. 128(1) (2002), 45-57. [11] P. L. Chambre, On the solution of the Poisson-Boltzmann equation with application to the theory of thermal explosions, The Journal of Chemical Physics 20(11) (1952), 1795-1797. [12] K. Boubaker and R. A. Van Gorder, Application of the BPES to Lane-Emden equations governing polytropic and isothermal gas spheres, New Astronomy 17(6) (2012), 565-569. [13] O. Abu Arqub, A. El-Ajou, A. S. Bataineh and I. Hashim, A representation of the exact solution of generalized Lane-Emden equations using a new analytical method, Abstr. Appl. Anal. 2013 (2013), Art. ID 378593, 10 pp. [14] M. Dehghan and F. Shakeri, Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method, Progress in Electromagnetics Research 78 (2008), 361-376. [15] J. I. Ramos, Linearization methods in classical and quantum mechanics, Comput. Phys. Comm. 153(2) (2003), 199-208. [16] V. Radulescu and D. Repovs, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal. 75(3) (2012), 1524-1530. [17] D. Flockerzi and K. Sundmacher, On coupled Lane-Emden equations arising in dusty fluid models, Journal of Physics: Conference Series 268(1) (2011), 012006. [18] M. Ghergu and V. Radulescu, On a class of singular Gierer-Meinhardt systems arising in morphogenesis, C. R. Math. Acad. Sci. Paris 344(3) (2007), 163 168. [19] M. K. Kadalbajoo and K. K. Sharma, Numerical treatment of a mathematical model arising from a model of neuronal variability, J. Math. Anal. Appl. 307(2) (2005), 606-627. [20] M. K. Kadalbajoo and K. K. Sharma, Numerical analysis of boundary-value problems for singularly perturbed differential-difference equations with small shifts of mixed type, J. Optim. Theory Appl. 115(1) (2002), 145-163. [21] F. Mirzaee and S. F. Hoseini, Solving singularly perturbed differential-difference equations arising in science and engineering with Fibonacci polynomials, Results in Physics 3 (2013), 134-141. [22] Z. Sabir, H. Günerhan and J. L. Guirao, On a new model based on third-order nonlinear multisingular functional differential equations, Math. Probl. Eng. 2020 (2020), Art. ID 1683961, 9 pp. [23] H. Xu and Y. Jin, The asymptotic solutions for a class of nonlinear singular perturbed differential systems with time delays, The Scientific World Journal 2014 (2014), Art. ID 965376, 7 pp. [24] F. Z. Geng, S. P. Qian and M. G. Cui, Improved reproducing kernel method for singularly perturbed differential-difference equations with boundary layer behavior, Appl. Math. Comput. 252 (2015), 58-63. [25] Z. Sabir, H. A. Wahab, M. Umar and F. Erdoğan, Stochastic numerical approach for solving second order nonlinear singular functional differential equation, Appl. Math. Comput. 363 (2019), 124605, 11 pp. [26] A. Z. Amin, M. A. Abdelkawy, E. Solouma and I. Al-Dayel, A spectral collocation method for solving the non-linear distributed-order fractional Bagley-Torvik differential equation, Fractal and Fractional 7(11) (2023), 780. [27] E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl. 62(5) (2011), 2364-2373. [28] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin and A. M. Lopes, Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations, Commun. Nonlinear Sci. Numer. Simul. 72 (2019), 342-359. [29] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin and D. Baleanu, Shifted Jacobi spectral collocation method with convergence analysis for solving integro-differential equations and system of integro-differential equations, Nonlinear Anal. Model. Control 24(3) (2019), 332-352. [30] A. H. Bhrawy, T. M. Taha and J. A. Tenreiro Machado, A review of operational matrices and spectral techniques for fractional calculus, Nonlinear Dynam. 81(3) (2015), 1023-1052. [31] E. H. Doha, A. H. Bhrawy, D. Baleanu and R. M. Hafez, A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations, Appl. Numer. Math. 77 (2014), 43-54. [32] V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Academic Publishers, The Netherlands, 1992. [33] A. H. Bhrawy and M. A. Abdelkawy, Fully spectral collocation approximation for multi-dimensional fractional Schrodinger equations, J. Comput. Phys. 294 (2015), 462-483. [34] A. H. Bhrawy, E. H. Doha, D. Baleanu and S. S. Ezz-eldein, A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, J. Comput. Phys. 293 (2015), 142-156. [35] E. H. Doha, R. M. Hafez and Y. H. Youssri, Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations, Comput. Math. Appl. 78(3) (2019), 889-904. [36] E. H. Doha, A. H. Bhrawy and R. M. Hafez, A Jacobi-Jacobi dual-Petrov-Galerkin method for third-and fifth-order differential equations, Math. Comput. Modelling 53(9-10) (2011), 1820-1832. [37] C. Lanczos, Trigonometric interpolation of empirical and analytic functions, J. Math. Phys. 17 (1938), 123-141. [38] C. W. Clenshaw, The numerical solution of linear differential equations in Chebyshev series, Proc. Camb. Phil. Soc. 53 (1957), 134-149. [39] C. W. Clenshaw and H. J. Norton, The solution of nonlinear ordinary differential equations in Chebyshev series, Comp. J. 6 (1963), 88-92. [40] K. Wright, Chebyshev collocation methods for ordinary differential equations, Comp. J. 6 (1964), 358-363.
|