Keywords and phrases: micropolar fluid, thermal radiation, shrinking sheet, viscous dissipation, Adams-Moulton method.
Received: June 1, 2023; Revised: September 13, 2023; Accepted: October 10, 2023; Published: January 29, 2024
How to cite this article: G. Thirupathi, K. Govardhan, G. Narender, Santoshi Misra and P. Kavitha, Exploring the impact of thermal radiation, viscous dissipation, and magnetic field on micropolar fluid flow over a shrinking surface with velocity slip, JP Journal of Heat and Mass Transfer 37(1) (2024), 1-21. http://dx.doi.org/10.17654/0973576324001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] J. Thomason, P. Jenkins and L. Yang, Glass fiber strength: a review with relation to composite recycling, Fibers 4 (2016), 18. [2] L. Zheng, J. Niu, X. Zhang and Y. Gao, MHD flow and heat transfer over a porous shrinking surface with velocity slip and temperature jump, Math. Comput. Modelling 56 (2012), 133-144. [3] A. C. Eringen, Theory of micropolar fluids, Journal of Mathematics and Mechanics 16 (1966), 1-18. [4] T. T. N. D. Ariman, M. A. Turk and N. D. Sylvester, Applications of micro continuum fluid mechanics, Internat. J. Engrg. Sci. 12 (1974), 273-293. [5] A. Ishak, R. Nazar and I. Pop, Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet, Meccanica 43 (2008), 411-418. [6] R. Bhargava, S. Sharma, H. S. Takhar, O. A. Beg and P. Bhargava, Numerical solutions for micropolar transport phenomena over a nonlinear stretching sheet, Nonlinear Analysis: Modelling and Control 12 (2007), 45-63. [7] D. Rees and I. Pop, Free convection boundary-layer flow of a micropolar fluid from a vertical at plate, IMA J. Appl. Math. 61 (1998), 179-197. [8] R. Nazar, N. Amin, D. Filip and I. Pop, Stagnation point flow of a micropolar fluid towards a stretching sheet, Internat. J. Non-Linear Mech. 39 (2003), 1227-1235. [9] A. Ishak, Y. Lok and I. Pop, Stagnation-point flow over a shrinking sheet in a micropolar fluid, Chemical Engineering Communications 197 (2010), 1417-1427. [10] T. Hayat, T. Javed and Z. Abbas, MHD flow of a micropolar fluid near a stagnation-point towards a non-linear stretching surface, Nonlinear Anal. Real World Appl. 10 (2009), 1514-1526. [11] N. A. Yacob, A. Ishak and I. Pop, Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet in a micropolar fluid, Comput. & Fluids 47 (2011), 16-21. [12] J. M. Dorrepaal, Slip flow in converging and diverging channels, J. Engrg. Math. 27 (1993), 343-356. [13] G. Bellani and E. A. Variano, Slip velocity of large neutrally buoyant particles in turbulent flows, New J. Phys. 14 (2012), 125009. [14] C. Wang, Analysis of viscous flow due to a stretching sheet with surface slip and suction, Nonlinear Anal. Real World Appl. 10 (2009), 375-380. [15] A. Noghrehabadi, R. Pourrajab and M. Ghalambaz, Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature, International Journal of Thermal Sciences 54 (2012), 253-261. [16] H. Alfven, Existence of electromagnetic-hydrodynamic waves, Nature 150 (1942), 405-406. [17] K. A. Yih, Free convection effect on MHD coupled heat and mass transfer of a moving permeable vertical surface, International Communications in Heat and Mass Transfer 26 (1999), 95-104. [18] L. Zheng, J. Niu, X. Zhang and Y. Gao, MHD flow and heat transfer over a porous shrinking surface with velocity slip and temperature jump, Math. Comput. Modelling 56 (2012), 133-144. [19] O. D. Makinde and A. Ogulu, The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field, Chemical Engineering Communications 195 (2008), 1575-1584. [20] M. Sheikholeslami, D. D. Ganji, M. Y. Javed and R. Ellahi, Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two-phase model, Journal of Magnetism and Magnetic Materials 374 (2015), 36-43. [21] A. Raptis, C. Perdikis and H. S. Takhar, Effect of thermal radiation on MHD flow, Appl. Math. Comput. 153 (2004), 645-649. [22] V. S. Arpaci, Effect of thermal radiation on the laminar free convection from a heated vertical plate, International Journal of Heat and Mass Transfer 11 (1968), 871-881. [23] A. Rauf, M. Ashraf, K. Batool, T. Hussain and M. A. Miraj, MHD flow of a micropolar fluid over a stretchable disk in a porous medium with heat and mass transfer, AIP Adv. 5 (2015), 077156. [24] K. Govardhan, G. Narender and G. Sreedhar Sarma, Heat and mass transfer in MHD nanofluid over a stretching surface along with viscous dissipation effect, International Journal of Mathematical, Engineering and Management Sciences 5(2) (2020), 343-352. [25] A. Rauf, S. A. Shehzad, T. Hayat, M. A. Miraj and A. Alsaedi, MHD stagnation point flow of micro nanofluid towards a shrinking sheet with convective and zero mass flux conditions, Bulletin of the Polish Academy of Sciences Technical Sciences 65(2) (2017), 155-162. [26] Ganji Narender, Kamatam Govardhan and Gobburu Sreedhar Sarma, Magnetohydrodynamic stagnation point on a Casson nanofluid flow over a radially stretching sheet, Beilstein J. Nanotechnol. 11 (2020), 1303-1315. [27] R. Sharma, A. Ishak and I. Pop, Stagnation point flow of a micropolar fluid over a stretching/shrinking sheet with second-order velocity slip, Journal of Aerospace Engineering 29 (2016), 04016025.
|