Keywords and phrases: two dimensional nonlinear heat transfer modeling, Dirichlet boundary conditions, implicit Euler discretization, FDM, Newton method.
Received: October 14, 2023; Revised: December 9, 2023; Accepted: December 23, 2023
How to cite this article: Djibet Mbainguesse, Djerayom Luc, Bakari Abbo and Youssouf Paré, Numerical solutions of nonlinear heat transfer modelling in a two-dimensional space, International Journal of Numerical Methods and Applications 24(1) (2024), 63-77. http://dx.doi.org/10.17654/0975045224005
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., John Wiley & Sons Inc., 2002. [2] S. Filipov and Farago I, Euler time discretisation and FDM with Newton method in nonlinear heat transfer modelling, Applied Analysis and Computational Mathematics 2 (2018), 94-98. [3] S. L. Sobolev, Partial Differentials Equations of Mathematical Physics, Dover Publication, 1989. [4] J. Lieman, A. Youssifi and J. G. Kerving, Nonlinear heat transfer modelling, Lecture Notes in Computational Science and Engineering, 2005. [5] U. M. Asher, R. M. M. Mattheij and R. D. Russel, Numerical solution of boundary value problems for ordinary differential equation, SIAM 13 (1995), 1-595. [6] S. M. Filipov, I. D. Gospadinov and I. Farago, Shooting projection methods for two points boundary values problems, Appl. Math. Lett. 72 (2017), 10-15. [7] H. S. Carlsaw and J. C. Jager, Conduction of Heat in Solid, 2nd ed., Oxford University Press, 1986. [8] J. Hone, M. Whitney, C. Piskote and A. Zettl, Thermal conductibility of single -walled carbon, Phys. Rev. 59 (1999), R2514-R2516. [9] J. Y. Tjalling, Historical development of Newton-Raphson, SIAM Rev. 37 (1995), 531-551. [10] G. Gesele, J. Linsmeir, V. Drach, J. Ficke and R. Arens-Fisher, Temperature-dependant thermal conductibility of porous silicon, J. Phys. D 30 (1997), 2911-2916. [11] A. M. Ostrowski, Solution of Equations and Systems of Equations, 2nd ed., Academic Press, New York, 1996. [12] J. F. Traub, Iterative Methods for Solution of Equations, Prentice Hall, Englewood Cliffs, NJ, 1964. [13] W. F. Ames, Numerical Methods for Partials Differential Equations, 3rd ed., Academic Press, Boston, 1992. [14] M. Gockenbach, Partial Differential Equations: Analytical and Numerical Methods, SIAM, Philadelphia, 2002. [15] L. Lapidus and G. F. Pinder, Numerical Solution of Partial Differential Equation in Science and Engineering, Wiley-Interscience, New York, 1994. [16] A. R. Mitchell and D. F Griffiths, The Finite Difference Method in Partial Differentia Equation, Wiley, New York, 1980. [17] J. C. Strickwerda, Finite Difference Schemes and Partial Differential Equation, Wadsworth and Brooks-Cole, Pacific Grove, CA, 1989. [18] U. M. Asher and L. Petzold, Computer Methods for Ordinary Differential Equations and Differential Algebraic Equation, SIAM, Philadelphia, 1998. [19] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, Cambridge, UK, 1996.
|