Keywords and phrases: Burr XII distribution, maximum likelihood estimation, ordinary and incomplete moments, entropies, quantile function.
Received: October 12, 2023; Accepted: December 29, 2023; Published: January 13, 2024
How to cite this article: Ali A. Al-Shomrani and Ahmed I. Shawky, A new family of distributions: properties and applications, Advances and Applications in Statistics 91(3) (2024), 257-300. http://dx.doi.org/10.17654/0972361724015
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] M. Aboray and N. S. Butt, Extended Weibull Burr XII distribution: properties and applications, Pak. J. Stat. Oper. Res. 15(4) (2019), 891-903. [2] H. Akaike, Information theory and an extension of the maximum likelihood principle, Second International Symposium on Information Theory, B. N. Petrov and F. Csaki, eds., Akadémiai Kiadó, Budapest, 1973, pp. 267-281. [3] H. Akaike, A new look at the statistical model identification, IEEE Trans. Automat. Control 19 (1974), 716-723. [4] H. Akaike, Likelihood of a model and information criteria, J. Econometrics 16 (1981), 3-14. [5] O. M. Akpa and E. I. Unuabonah, Small-sample corrected Akaike information criterion: an appropriate statistical tool for ranking of adsorption isotherm models, Desalination 272 (2011), 20-26. [6] C. Alexander, G. M. Cordeiro, E. M. M. Ortega and J. M. Sarabia, Generalized beta generated distributions, Comput. Statist. Data Anal. 56 (2012), 1880-1897. [7] A. Y. Al-Saiari, L. A. Baharith and S. A. Mousa, Marshall-Olkin extended Burr Type XII distribution, International Journal of Statistics and Probability 3(1) (2014), 78-84. [8] A. Al-Shomrani, O. Arif, A. I. Shawky, S. Hanif and M. Q. Shahbaz, Topp-Leone family of distribution: some properties and application, Pak. J. Stat. Oper. Res. 12 (2016), 443-451. [9] A. Alzaatreh, C. Lee and F. Famoye, A new method for generating families of continuous distributions, Metron 71 (2013), 63-79. [10] A. Alzaghal, F. Famoye and C. Lee, Exponentiated T-X family of distributions with some applications, International Journal of Statistics and Probability 2 (2013), 31-49. [11] M. Amini, S. M. T. K. MirMostafee and J. Ahmadi, Log-gamma-generated families of distributions, Statistics 48 (2012), 913-932. [12] D. R. Anderson, K. P. Burhnam and G. C. White, Comparison of Akaike information criterion and consistent Akaike information criterion for model selection and statistical inference from capture-recapture studies, J. Appl. Stat. 25(2) (1998), 263-282. [13] E. G. Antonio, C. Q. da-Silva and G. M. Cordeiro, Two extended Burr models: theory and practice, Commun. Statist. Theory Meth. 44(8) (2015), 1706-1734. [14] M. Asadi, On the mean past lifetime of the components of a parallel system, J. Statist. Plann. Inference 136 (2006), 1197-1206. [15] F. Ashkar and S. Mahdi, Fitting the log-logistic distribution by generalized moments, Journal of Hydrology 328 (2006), 694-703. [16] I. Bairamov and M. Ozkut, Mean residual life and inactivity time of a coherent system subjected to Marshall-Olkin type shocks, J. Comput. Appl. Math. 298 (2016), 190-200. [17] A. C. Bemmaor and N. Glady, Modeling purchasing behavior with sudden death: a flexible customer lifetime model, Management Science 58(5) (2012), 1012-1021. [18] M. Bourguignon, R. B. Silva and G. M. Cordeiro, The Weibull-G family of probability distributions, Journal of Data Science 12 (2014), 53-68. [19] H. Bozdogan, Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions, Psychometrika 52 (1987), 345-370. [20] K. Brown and W. Forbes, A mathematical model of aging processes, Journal of Gerontology 29(1) (1974), 46-51. [21] I. W. Burr, Cumulative frequency functions, Annals of Mathematical Statistics 13 (1942), 215-232. [22] R. G. Clark, H. V. Henderson, G. K. Hoggard, R. S. Ellison and B. J. Young, The ability of biochemical and hematological tests to predict recovery in periparturient recumbent cows, NZ Veterinary Journal 35 (1987), 126-133. [23] D. Collett, Modelling Survival Data in Medical Research, Chapman and Hall, London, 2003. [24] D. Conen, V. Wietlisbach, P. Bovet, C. Shamlaye, W. Riesen, F. Paccaud and M. Burnier, Prevalence of hyperuricemia and relation of serum uric acid with cardiovascular risk factors in a developing country, BMC Public Health 4 (2004), Article number 9. http://www.biomedcentral.com/1471-2458/4/9. [25] G. M. Cordeiro and M. de-Castro, A new family of generalized distributions, J. Stat. Comput. Simul. 81 (2011), 883-893. [26] G. M. Cordeiro, E. M. M. Ortega and G. Silva, The beta extended Weibull family, Journal of Probability and Statistical Science 10 (2012), 15-40. [27] G. M. Cordeiro, E. M. M. Ortega and D. C. C. da-Cunha, The exponentiated generalized class of distributions, Journal of Data Science 11 (2013), 1-27. [28] G. M. Cordeiro, M. Alizadeh and E. M. M. Ortega, The exponentiated half-logistic family of distributions: properties and applications, J. Probab. Stat. (2014), Article ID 864396, 21 pp. [29] F. Domma and F. Condino, The beta-Dagum distribution: definition and properties, Commun. Statist. Theory Meth. 44 (2013), 4070-4090. [30] A. C. Economos, Rate of aging, rate of dying and the mechanism of mortality, Archives of Gerontology and Geriatrics 1(1) (1982), 46-51. [31] P. Ein-Dor and J. Feldmesser, Attributes of the performance of central processing units: a relative performance prediction model, Comm. ACM 30 (1987), 308-317. [32] N. Eugene, C. Lee and F. Famoye, Beta-normal distribution and its applications, Commun. Statist. Theory Meth. 31 (2002), 497-512. [33] P. R. Fisk, The graduation of income distribution, Econometrica 29 (1961), 171-185. [34] I. Ghosh and M. Bourguignon, A new extended Burr XII distribution, Austrian Journal of Statistics 46 (2017), 33-39. [35] H. Goual and H. M. Yousof, Validation of Burr XII inverse Rayleigh model via a modified chi-squared goodness-of-fit test, J. Appl. Stat. 47(3) (2020), 393-423. [36] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed., Academic Press, San Diego, 2000. [37] W. Gui, Marshall-Olkin extended log-logistic distribution and its application in minification processes, Appl. Math. Sci. 7(80) (2013), 3947-3961. [38] Y. Guney and O. Arslan, Robust parameter estimation for the Marshall-Olkin extended Burr XII distribution, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 66(2) (2017), 141-161. [39] E. J. Hannan and B. G. Quinn, The determination of the order of an autoregression, Journal of the Royal Statistical Society, Series B 41 (1979), 190-195. [40] S. Heritier, E. Cantoni, S. Copt and M. Victoria-Feser, Robust Methods in Biostatistics, John Wiley & Sons, New York, 2009. [41] F. Jamal, M. A. Nasir, M. H. Tahir and N. H. Montazeri, The odd Burr-III family of distributions, Journal of Statistics Applications and Probability 6 (2017), 105-122. [42] N. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Volume 1, 2nd ed., Wiley, New York, 1994. [43] N. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Volume 2, 2nd ed., Wiley, New York, 1995. [44] M. C. Jones, Families of distributions arising from distributions of order statistics, Test 13 (2004), 1-43. [45] J. Kenney and E. Keeping, Mathematics of Statistics, Volume 1, 3rd ed., Princeton, Van Nostrand, New Jersey, 1962. [46] C. Kleiber and S. Kotz, Statistical Size Distributions in Economics and Actuarial Sciences, John Wiley, New York, 2003. [47] J. D. Kloke and J. W. Mckean, R fit: rank-based estimation for linear models, The R Journal 4 (2012), 57-64. [48] J. F. Lawless, Statistical Models and Methods for lifetime data, John Wiley, New York, 2003. [49] A. J. Lemonte, The beta log-logistic distribution, Braz. J. Probab. Stat. 28(3) (2014), 313-332. [50] S. R. Lima and G. M. Cordeiro, The extended log-logistic distribution: properties and application, Annals of the Brazilian Academy of Sciences 89(1) (2017), 3-17. [51] M. E. Mead, A new generalization of Burr XII distribution, Journal of Statistics: Advances in Theory and Applications 12(2) (2014), 53-73. [52] J. J. A. Moors, A quantile alternative for kurtosis, The Statistician 37 (1998), 25-32. [53] H. M. Moustafa and S. G. Ramadan, Errors of misclassification and their probability distributions when the parent populations are Gompertz, Appl. Math. Comput. 163 (2005), 423-442. [54] S. Nadarajah, G. M. Cordeiro and E. M. M. Ortega, The Zografos-Balakrishnan-G family of distributions: Mathematical properties and applications, Commun. Statist. Theory Meth. 44 (2015), 186-215. [55] M. A. Nasir, M. H. Tahir, F. Jamal and G. Ozel, A new generalized Burr family of distributions for the lifetime data, Journal of Statistics Applications and Probability 6(2) (2017), 401-417. [56] P. F. Paranaíba, E. M. M. Ortega, G. M. Cordeiro and R. R. Pescim, The beta Burr XII distribution with application to lifetime data, Comput. Statist. Data Anal. 55 (2011), 1118-1136. [57] P. F. Paranaíba, E. M. M. Ortega, G. M. Cordeiro and M. A. de Pascoa, The Kumaraswamy Burr XII distribution: theory and practice, J. Stat. Comput. Simul. 83 (2013), 2117-2143. [58] R. R. Pescim, G. M. Cordeiro, C. G. B. Demetrio, E. M. M. Ortega and S. Nadarajah, The new class of Kummer beta generalized distributions, Statistics and Operations Research Transactions (SORT) 36 (2012), 153-180. [59] A. P. Prudnikov, Y. A. Brychkov and O. I. Morichev, Integrals and Series, Vol. 4: Direct Laplace Transforms, Gordon and Breach Science Publishers, New York, London, 1992. [60] A. Rényi, On measures of entropy and information, 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 1961, pp. 547-561. [61] S. Rezaei, B. B. Sadr, M. Alizadeh and S. Nadarajah, Topp-Leone generated family of distributions: properties and applications, Commun. Statist. Theory Meth. 46(6) (2017), 2893-2909. [62] M. M. Ristiec and N. Balakrishnan, The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul. 82 (2012), 1191-1206. [63] T. V. F. de Santana, E. M. M. Ortega, G. M. Cordeiro and G. O. Silva, The Kumaraswamy-log-logistic distribution, J. Stat. Theory Appl. 11(3) (2012), 265-291. [64] G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978), 461-464. [65] C. E. Shannon, Prediction and entropy of printed English, Bell System Technical Journal 30 (1951), 50-64. [66] H. Shono, Efficiency of the finite correction of Akaike’s information criteria, Fisheries Science 66 (2000), 608-610. [67] R. B. Silva and G. M. Cordeiro, The Burr XII power series distributions: a new compounding family, Braz. J. Probab. Stat. 29(3) (2015), 565-589. [68] P. R. Tadikamalla, A look at the Burr and related distributions, International Statistical Review 48 (1980), 337-344. [69] M. H. Tahir and S. Nadarajah, Parameter induction in continuous univariate distributions: well-established G families, Anada Academia Brasileira de Cincias (Annals of the Brazilian Academy of Sciences) 87 (2015), 539-568. [70] M. H. Tahir, M. Mansoor, M. Zubair and G. G. Hamedani, McDonald log- logistic distribution, J. Stat. Theory Appl. 13 (2014), 65-82. [71] M. H. Tahir, G. M. Cordeiro, M. Alizadeh, M. Mansoor, M. Zubair and G. G. Hamedani, The odd generalized exponential family of distributions with applications, Journal of Statistical Distributions and Applications 2(1) (2015), 1 28. [72] M. H. Tahir, G. M. Cordeiro, A. Alzaatreh, M. Mansoor and M. Zubair, The logistic-X family of distributions and its applications, Commun. Statist. Theory Meth. 45 (2016a), 7326-7349. [73] M. H. Tahir, M. Zubair, M. Mansoor, G. M. Cordeiro, M. Alizadeh and G. G. Hamedani, A new Weibull-G family of distributions, Hacet. J. Math. Stat. 45 (2016b), 629-647. [74] H. Torabi and N. H. Montazeri, The gamma-uniform distribution and its application, Kybernetika 48 (2012), 16-30. [75] H. Torabi and N. H. Montazeri, The logistic-uniform distribution and its applications, Commun. Statist. Simulation Comp. 43 (2014), 2551-2569. [76] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S, 4th ed., Springer, New York, 2002. [77] P. F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Corresp. Math. Phys. 10 (1838), 113-121. [78] S. Weisberg, Applied Linear Regression, 4th ed., Wiley, Hoboken, NJ, 2014. URL: http://z.umn.edu/alr4ed. [79] W. Willemse and H. Kappelaar, Knowledge elicitation of Gompertz law of mortality, Scand. Actuar. J. 2 (2000), 168-179. [80] K. Zografos and N. Balakrishnan, On families of beta- and generalized gamma-generated distributions and associated inference, Stat. Methodol. 6 (2009), 344-362.
|