Keywords and phrases: SBA method, Hadamard integral, Caputo Hadamard fractional derivative, Caputo Hadamard fractional differential equation.
Received: September 26, 2023; Accepted: November 10, 2023; Published: January 9, 2024
How to cite this article: Germain KABORE, Abakar Mahamat SEID, Bakari Abbo, Ousséni SO and Blaise SOME, Application of the SBA method to the solution of some nonlinear fractional equations in the sense of Caputo Hadamard, Universal Journal of Mathematics and Mathematical Sciences 19(2) (2023), 103-117. http://dx.doi.org/10.17654/2277141723019
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] Abdoul Wassiha NEBIE, Frédéric BERE, Bakari ABBO and Youssouf PARE, Solving some derivative equations fractional order nonlinear partials using the Some Blaise Abbo method, Journal of Mathematics Research 13(2) (2021). doi: 10.5539/jmr.v13n2p101. [2] A. Khalouta and A. Kadem, A new numérical technique for solving caputo time-fractional biological population equation, AIMS Mathematics 4(5) (2019), 1307 1319. [3] A. R. Nabulsi, The fractional white dwarf hydrodynamical nonlinear differential and emergence of quark stars, Appl. Math. Comput. 218(6) (2011), 2837-2849. [4] B. ABBO, O. SO, G. BARRO and B. SOME, A new numerical algorithm for solving nonlinear partial differential equations with initial and boundary conditions, Far East J. Appl. Math. 28(1) (2007), 37-52. [5] Blaise SOME, Méthode SBA de résolution des modèles mathématiques en environnement, Éditions Universitaires Européennes, 2018. [6] B. Abbo, Nouvel algorithme numérique de résolution des équations différentielles ordinaries (EDO) et des équations aux dérivées partielles (EDP) non linéaires, Thèse de Doctorat unique, Université de Ouagadougou, UFR/SEA, Département Mathématique et Informatique (Burkina Faso), 2007. [7] F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Article in Advances in Difference Equations 2012. doi: 10.1186/1687-1847-2012-142. [8] G. KABORE, W. SOME, M. KÉRÉ, O. SO and B. SOME, Solving some fractional ordinary differential equations by SBA method, Journal of Mathematics Research 15(1) (2023). doi: 10.5539/jmr.v15n1p47. [9] Germain KABORE, KÉRÉ Moumini, Windjiré SOME, Ousséni SO and Blaise SOME, Solving some fractional equations, in the sense of Riemann-Liouville, of Navier-Stokes by the numerical method SBA plus, International Journal of Numerical Methods and Applications 23(2) (2023), 209-228. http://dx.doi.org/10.17654/0975045223012. [10] J. Hadamarad, Essai sur l’etude des fonctions donnes par leur développment de Taylor, J. Pure Appl. Math. 4(8) (1892), 101-186. [11] J. Singh, D. Kumar and A. Kilicman, Numerical solutions of nonlinear, Fractional Partial Differential Equations Arising in Spartial Diffusion of Biological Populations, Abstr. Appl. Anal. (2014), 1-12. [12] J. T. Katsikadelis, Nonlinear dynamic analysis of viscoelastic membranes described with fractional differential models, J. Theoretical Appl. Mech. 50(3) (2012), 743-753. [13] J. R. Wang and Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl. 12(1) (2011), 262-272. [14] Kamate Adama, Bationo Jeremie Yiyureboula, Djibet Mbaiguesse and Youssouf Pare, Analytical solutions of classical and fractional Navier-Stokes equations by the SBA method, Journal of Mathematics Research 14(4) (2022). https://doi.org/10.5539/jmr.v14n4p20.
|